
1

Abstract

A common shortcoming of many network measurement
programs is that their metrics are not expressed in terms
directly applicable to applications and users. To address
this problem, we have developed the IP Benchmark (IPB),
a benchmark program that synthetically generates traffic
to simulate the network activity of common Internet appli-
cations. It measures the performance experienced by the
simulated applications, and expresses that performance in
terms of application-specific metrics. After presenting
some details of the design and implementation of IPB, we
show how we use it to measure HTTP performance along
various long-delay, lossy ATM links, such as might be
found in satellite or wireless ATM environments. These
links themselves are simulated by using a BBN Long link
Emulator, which adds delays and errors to local-area OC-
3 links. Finally, we present some preliminary results.

1 Introduction

A challenge in evaluating the performance of com-
puter networks is the ability to do so in a manner meaning-
ful to applications and users. While commonly-used
microbenchmarks such as ttcp [16] give some useful
information such as raw throughput and round-trip time,
they frequently do not provide the type of data meaningful
to users. Many users’ concerns revolve around metrics
such as the response time while Web browsing, keystroke
echo time during remote login sessions, and the quality of
network video.

We have developed an IP Benchmark (IPB), which
uses synthetic, simulated network traffic to measure the
performance across an IP network or internetwork, with
respect to the requirements of different Internet applica-
tions. Currently, it incorporates simulations of the telnet
remote login service and the Hypertext Transfer Protocol
(HTTP) used by World Wide Web applications. Both sim-
ulations are based on empirical models derived from traffic
traces, and both rely on the functionality of the actual
TCP/IP protocol stacks in the hosts running the bench-
mark. IPB supports running a mix of various applications

simultaneously. IPB’s network performance measure-
ments are expressed in terms of application-specific met-
rics, such as the response time for telnet connections or the
time to request and receive a Web page.

We have used IPB to measure the performance of
HTTP over lossy links with various delays, such as might
be found in a satellite or indoor wireless network. Our
experimental setup uses a BBN Long Link Emulator
(LLE) to provide an environment with tunable delay and
error characteristics. Although the LLE is an OC-3
SONET device, we run IP over ATM across the SONET
links.

In Section 2, we describe our benchmark software,
with an emphasis on its simulation of HTTP traffic based
on an empirically-derived model. Section 3 briefly out-
lines the network testbed we are using to investigate satel-
lite and wireless links, through network emulation. In
Section 4 we present the results of our initial experiments
with these various components. Finally, we present a sum-
mary and some directions for future work in Section 5.

2 IP Benchmark

To investigate network performance with respect to
real-world Internet applications, we have constructed a
traffic generation and measurement program, rather
unimaginatively titled the IP Benchmark (IPB). IPB can be
run between any two IP hosts to test the performance of
various network applications sending data over the path
between those hosts. Like actual network applications,
IPB uses the TCP, UDP, and IP implementations on the
two endhosts, thus allowing measurement studies made
using IPB to capture the effects of different protocol
implementations and operating systems.

IPB is written in C++, and consists of two executable
programs, to be run on each end of a path or link to be
tested. A client application ipb initiates connections and
sends data on them, to simulate the activity of a number of
users running some number of applications. The arrival of
new user sessions is generated according to a set of Pois-
son processes (one per application type), while the behav-
ior of each conversation is controlled by application-

IPB: An Internet Protocol Benchmark Using Simulated Traffic

Bruce A. Mah
bmah@CA.Sandia.GOV

Sandia National Laboratories / California
P.O. Box 969, M.S. 9011

Livermore, CA 94551-0969

Peter Sholander, Luis Martinez, Lawrence Tolendino
{peshola,lgmarti,lftolen}@Sandia.GOV

Sandia National Laboratories / New Mexico
P.O. Box 5800

Albuquerque, NM 87185

Copyright 1998 IEEE. Published in Proceedings of the Sixth International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ‘98), 21–24 July 1998, Montreal, Canada. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copy righted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service
Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

2

specific traffic models. A server application ipbd accepts
connections from the client. It responds as necessary to
data sent by the client, for example, in the form of key-
stroke echoes for a telnet remote login session. Both pro-
grams log the performance characteristics of the simulated
network applications.

We note that ipb and ipbd only mimic the actions
of various Internet applications; they do not contain or rely
on the actual programs themselves. However, both ipb
and ipbd send data over the network using the endhosts’
IP stacks, using standard sockets. This approach allows us
to observe any artifacts caused by the protocol implemen-
tations.

To avoid overheads caused by process context
switches, both ipb and ipbd are implemented as single
processes, and take it upon themselves to manage the state
for a potentially large number of active sessions. This
approach had the noticeable effect of increasing the imple-
mentation complexity over a design using a process per
conversation.

ipb and ipbd both share a similar structure, pat-
terned somewhat after an event-driven network simulator.
In fact, the implementations of the traffic models were
adapted from those in the INSANE IP-over-ATM network
simulator [6, 7]. In ipb and ipbd, there are two types of
events that can be handled by the simulation code. Timer
events control the arrival of external events, such as the
entrance of new users into the system or the behavior of
current users. Network I/O events signal the readiness of
sockets for reading or writing or (in the case of ipbd) the
arrival of a new connection. Generic pseudo-code for the
main event loops of ipb and ipbd is shown in Figure 1.

In the remainder of this section, we present some
details about IPB’s simulation of HTTP network traffic.
IPB also incorporates a simulation of the telnet remote
login service [13], based on the empirical model of [4].

2.1 Model of HTTP Traffic

To simulate network activity caused by World Wide
Web applications, IPB uses a model of network traffic gen-
erated by applications using the Hypertext Transfer Proto-
col (HTTP) [3, 5]. HTTP is a request-response protocol
used to transfer files between Web clients and servers; for
reliability, HTTP relies on the services of the TCP trans-
port protocol [12, 15]. Web documents, or “pages”, are
composed of a series of these files, each of which are
requested and transferred individually. The traffic model
used by IPB is defined by a small number of probability
distributions, computed by gathering and analyzing traffic
traces of World Wide Web conversations. The different

quantities modeled are summarized in Table 1. Further
details on this model and its derivation can be found in [8].

2.2 Simulated HTTP Client

ipb contains code to simulate the actions of a number
of HTTP client processes, all running independently. Each
simulated HTTP retrieval begins with a request message
(characterized by the request length distribution), sent by
TCP to the simulated HTTP server. ipb matches each
reply with its corresponding request message, and records
the round-trip time (RTT) for each retrieval. Web pages
are represented by a number of successive retrievals
(drawn from the document size distribution).

To simulate the use of the “Keep Alive” extension in
HTTP/1.0 and HTTP/1.1, each client session keeps only
one TCP connection open at a time, and reuses it for multi-
ple retrievals1. Moreover, ipb “pipelines” the requests for
a given Web page, so that all requests after the first on the
page are made at once, without waiting for their replies.
This behavior simulates a Web browser requesting and

1. Alternatives to “persistent-connection HTTP” include the use of indi-
vidual TCP connections to transfer files in series, and the use of multiple
connections in parallel, first seen in [10].

Initialize();
event = FindNextExternalEvent();
while (true) {

// Select to find ready sockets,
// with timeout based on external
// event from queue.
n = select();
if (n == 0) {

// No I/O, timer event was next.
// Dispatch timer event, based
// on what application posted
// it. The handler may queue up
// new external events.
Handle(event);
Dequeue(event);
event = FindNextExternalEvent();

}
else {

// Dispatch I/O event, based
// on what socket caused it.
// These handlers may also queue
// new external events.
sock = FindSocket();
Handle(sock);

}
}

FIGURE 1. Pseudo-Code of ipb and ipbd Event
Loops.

3

receiving HyperText Markup Language (HTML) text [2]
for a page, determining the set of “secondary” files needed
(such as in-line images), and then requesting them all as a
batch. In addition to the response time for each file
retrieved, ipb records the total response time for each
Web page. We note that because of the pipelining of multi-
ple HTTP requests, the requests and replies for the files
making up a Web page may overlap. Thus, the response
time for a Web page will frequently be less than the sum of
the response times for its component files. Figure 2 illus-
trates the relationship between HTTP files and Web pages.

Between documents, the client pauses for a random
interval of time to simulate the user’s reading of the
newly-retrieved page and determining her next action.
This length of time is described using the think time proba-
bility distribution.

Each simulated client requests a total number of Web
pages drawn from the consecutive document retrievals
component of the HTTP model. After this point, the client
ceases operations, on the assumption that the associated
user has shifted her attention to a new Web server or has
closed her Web browser. New clients enter the system
according to a Poisson process, with an average interar-
rival time specified from the ipb command line.

2.3 Simulated HTTP Server

The functionality of the simulated HTTP server in
ipbd is considerably simpler than that of the client. For
each currently-established connection, ipbd receives
HTTP requests and returns responses whose sizes are
drawn from the reply length distribution. Each reply is sent
on the same TCP connection that carried its corresponding
request.

The implementation of the HTTP server, however, is
complicated somewhat by our original desire to use a sin-
gle process for the benchmark server. To simulate the
actions of multiple, potentially-blocking processes by a
single process requires some effort. We chose an approach
in which ipbd composes outgoing replies and attempts to
send them as non-blocking sends. If transmission of an
HTTP response cannot be completed in full, ipbd records
the remaining portion of the response. A write of the
remaining data is reattempted once the TCP socket is once
again ready for writing; in the meantime the ipbd process
is free to deal with other connections.

Because the simulated HTTP data transported is
merely a test pattern (arbitrary bytes with NULL/zero
bytes used to delimit responses) it is fairly easy to recon-
struct remaining partial responses. For each TCP connec-
tion used for HTTP, ipbd only needs a record of the
number of bytes remaining in the current partial response
(if any) and a list of the sizes of any pending responses
queued up behind it.

We note that there are a number of approaches to
structuring Internet server programs. Many modern Web
servers, such as Apache [1], rely on a pool of processes to

Quantity Description

request length HTTP request length. Request sizes are
bi-modal, with about 70% of requests
around 250 bytes long and about 15%
around 1 KB.

reply length HTTP reply length. Replies have a heavy-
tailed distribution, with a median of 1.5–
2.0 KB and a mean of 8–10 KB. Can be
approximated with a Pareto distribution.

document size Number of files per document. Although
the mean document consists of 2.8–3.2
files, more than half of all documents
consist of only one file.

think time Time between retrieval of two successive
documents, with a median of 15 seconds.

consecutive
document
retrievals

Number of consecutive documents
retrieved from a given Web server. The
mean visit to a server retrieved four docu-
ments, although the median visited
retrieved two.

server selection Chooses a Web server to visit. Not used
by IPB.

TABLE 1. HTTP Traffic Parameters Modeled.

Server

Request
Reply

 Page Response Time

File
Client

FIGURE 2. HTTP File Transfers. Diagonal arrows
represent requests (upward) and replies
(downward), as time proceeds to the right.
Pictured are the interactions needed to retrieve a
single Web page comprised of three files.

Resp. Time
Think Time

4

handle multiple pending HTTP requests. With this
approach, a requests that gets blocked due to TCP conges-
tion/flow control, disk I/O, or other processing delays will
have minimal impact on other requests. In simpler, single-
process servers, a blocked request causes all other pending
requests to be queued behind it. Others, such as the Squid
HTTP proxy/cache [14], rely on non-blocking I/O in
essentially the same way as ipbd.

3 An Emulated Wireless/Satellite
Environment

We have used IPB to examine the performance of
HTTP applications across various types of SONET links.
In order to investigate a space of different types of links
(characterized by their delay and loss properties), we used
a BBN Long Link Emulator (LLE) [9] to simulate a wire-
less or satellite link in a controlled setting. The LLE is a
device that can induce delays and errors in OC-3 links, to
simulate the effects of long transmission links. It causes
delays up to approximately 206 ms (in each direction) per
link by buffering data in its on-board memory2. Errors can
be created through the use of hardware error generators,
which can be set to produce errors of specified frequency
and duration. The LLE operates on data at a bit level, so it
is oblivious to SONET framing or any higher-layer proto-
cols. It can forward data at the full OC-3 line rate of 155
Mbps, on up to five bidirectional links, with both direc-
tions of each link controlled independently.

The LLE’s operation is programmable. It contains an
on-board SPARC processor, RAM, and a small hard disk.
The LLE runs a suitably-modified version of SunOS, and
can appear as an IP host on a network through a standard
Ethernet interface. Software included with the unit allows
a variety of methods to change the delay and error proper-
ties, either manually or under a program’s control. How-
ever, the SPARC processor is not on the data forwarding
path; delays and errors are created entirely by the LLE
hardware.

The LLE’s on-board error generator is capable of pro-
ducing either various types of errors at random, such as bit
inversions, “all zeros”, or random noise. It uses a pseudo-
random number generator, driven by a hardware clock, to
control the timing of errors. The error generators can cre-
ate random errors with a byte corruption probability of

 to . Errors occur in fixed-sized bursts of between
one and eight bits.

2. The propagation time to a satellite in geosynchronous orbit is approx-
imately 125 ms, for an up-and-down propagation time of approximately
250 ms, slightly longer than the 206 ms capability of a single link buffer
on the LLE. Multiple links can be cascaded to produce longer delays.

For some scenarios, more sophisticated controls over
errors will be required. The hardware has only two param-
eters for describing random errors (the probability of byte
corruption and the fixed length of error bursts, in bits).
These two parameters, by themselves, are insufficient to
describe more complex loss patterns. For example, an
empirical study of an indoor wireless network showed
error-free periods and error bursts whose lengths were
described by two empirical probability distributions or
analytically approximated by a set of five distributions
[11]. Simulating such loss patterns requires a more flexible
characterization of errors.

In some scenarios involving mobility or low-earth-
orbit (LEO) satellites, it may be useful to modify a link’s
delay while data is being transmitted. However, the LLE
delay hardware causes “glitches” in a link whenever its
delay is changed. Modifying the link delay during active
operations is not recommended, as the “glitch” can last as
long as the new link delay.

The remainder of our network testbed consists of two
Sun Sparcstation 10s running SunOS 4.1.3 with FORE
ASB-200 ATM NICs. The ATM NICs were connected to
the BBN LLE, giving the appearance to the end systems
that they were directly connected over a single OC-3 link,
with no intervening switches. This setup is depicted in
Figure 3.

We established a pair of Permanent Virtual Circuits
(PVCs) to carry our test data over the link. We also config-
ured the drivers and routing tables on the Sparcstations to
forward all IP packets between them over our PVCs. The
IP Maximum Transmission Unit (MTU) over the IP-over-
ATM link was the default value of 9188 bytes. Finally, we
used FDDI interfaces on the two Sparcstations and the
Ethernet interface on the LLE for remote logins and con-
trol functions.

2
37–

2
6–

FIGURE 3. Experimental Setup. Arrows show the
direction of data flow. Connections to production
Ethernet and FDDI networks are not shown.

Sun Sparcstation 10
SunOS 4.1.3

FORE ASB-200

Sun Sparcstation 10
SunOS 4.1.3

FORE ASB-200

BBN LLE
SunOS 4.1.1

wem

ipbdipb

5

4 Experimental Results

In this section, we present some initial measurements
we performed using the BBN LLE and the ipb and ipbd
benchmark programs. The results we obtained are summa-
rized in Table 2, and discussed in some detail in the
remainder of this section.

4.1 Delay Effects

We used the LLE to vary the one-way propagation
delay on the link between the two Sparcstations in the
range of 1–200 ms. We set identical delays on the two
sides of the bidirectional link, although the hardware
would have allowed us to configure asymmetric delays
(such a setup could occur in a network using a satellite
link for distribution and a terrestrial modem backchannel).
For this first set of runs we disabled the LLE’s error gener-
ator. Aside from the traffic generated by our experiments,
the link was idle.

We performed three measurement runs of the bench-
mark at each of four delay settings, with new clients enter-
ing the system every 15 seconds on average. Each run
lasted approximately an hour. Table 3 shows statistics
describing the response times for all of the files retrieved
at each delay setting (aggregated across all runs). Each
delay time in these sample distributions indicates the
amount of time elapsed between the sending of a request
and the receipt of the last byte of the reply, corresponding
to a single HTTP file transaction.

Figure 4 depicts the Cumulative Distribution Func-
tions (CDFs) of the retrieval times, for different propaga-
tion delays. As can be seen, the file retrieval times are
highly influenced by long RTTs; there are pronounced
“steps” at integer multiples of the round-trip times, espe-
cially visible with 100 ms and 200 ms propagation delays.
We note that with such long RTTs, the delay-bandwidth

product can be considerable (8 MB in the case of a 200 ms
propagation delay, leading to a 400 ms RTT). By contrast,
the median Web file size in the model of [8] is approxi-
mately 2 KB. For these short files, the TCP slowstart algo-
rithm dictates that the server sends small segments of the
file and awaits acknowledgments from the client, gradu-
ally building up the TCP congestion window. This send-
acknowledge style of communication persists until the
TCP congestion window opens sufficiently to allow
steady-state streaming of data; small HTTP file transfers
do not involve enough packets to permit this to happen
(note that 80% of file transfers completed in 2 RTTs or
less).

Web pages are composed of one or more files. In
Table 4, we present the statistics of the page retrieval
times, with varying propagation times. Each of the page
retrieval times measures the elapsed time between the
sending of the first request on a given Web page and the
receipt of the last byte of the last reply on that page. It is a
measure of how long a user needs to wait for the down-
loading of a complete Web page. We note again that, due
to the fact that there may be multiple outstanding requests
for a given Web page, the total retrieval time for a page

The mean HTTP file transfer can take as much as seven times
longer to complete with the introduction of a link with a

bit error rate. The mean Web page transfer can take four
times longer to complete.

Long links tend to cluster HTTP page and file retrieval times
around integer multiples of the round-trip time. This effect
gradually fades away for long transfers on a lossy link, due to
the effects of TCP timeouts and retransmissions.

Our simulated error-prone link shows a large effect on the
90th- and higher-percentile file and page transfer times; it has
little effect on the median transfer times.

The effects of errors are proportionately larger for short-delay
links, although the absolute difference in transfer times is
more for long-delay links.

TABLE 2. Summary of Simulation Results.

10
6–

 Delay 1 ms 10 ms 100 ms 200 ms

Number 5733 5693 5314 5130

Mean 16.4 ms 52.9 ms 535.1 ms 927.9 ms

Min 3.5 ms 21.5 ms 201.4 ms 401.4 ms

Max 624.9 ms 929.0 ms 38827.6 ms 41959.7 ms

Median 8.3 ms 25.4 ms 205.0 ms 406.1 ms

TABLE 3. HTTP File Retrieval Times on Error-Free
Link. Columns correspond to varying one-way
propagation delays.

FIGURE 4. Cumulative Distribution Function of
HTTP File Retrieval Times, Error-Free Link.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 500 1000 1500 2000

C
D

F

HTTP File Retrieval Time (ms)

1 ms propagation
10 ms propagation

100 ms propagation
200 ms propagation

6

may be less than the sum of the retrieval times of each of
its component files.

We present the CDFs of the retrieval times of com-
plete Web pages in Figure 5. As would be expected, the
page retrieval times tend to be longer than those for indi-
vidual pages. However, the CDFs still exhibit a similar
“stair-step” shape, indicating that the page retrieval times
tend to cluster around some multiple of the RTT, for high
RTTs. This fact is not terribly surprising, given that most
Web pages consist of small number of files (which are,
themselves, short).

4.2 Error Effects

We next ran the same experiments with the LLE pro-
viding a lossy ATM link, such as might be found in a wire-
less or satellite ATM environment. We programmed the
LLE to provide isolated bit errors, with a BER of , or
approximately . Tests using the UNIX ping(1) util-
ity showed that this BER translates to a packet loss rate of
approximately 1% for 1 KB packets. Other than the use of
the LLE’s error generators, our setup was the same as in
Section 4.1.

Table 5 shows some of the statistics on simulated per-
formance with the wireless emulator active. As expected,
the mean response times are several times longer than
those obtained with an error-free link. However, the
median response times were largely unaffected, likely due
to the discretization of response times to integer multiples
of the RTTs.

This effect is quite visible in Figure 6, which shows
the CDF of the file retrieval times with a lossy link. In both
the error-free and lossy cases, the first “plateau” in the
CDF, coming between the first two modes, remains just
above the median. As the modes of these distribution are
still determined by the RTT, the median file response time
is nearly the same as with the error-free link. Qualitatively,
Figure 6 also shows that at long retrieval times, the intro-
duction of errors smooths out the clustering effects around
integer multiples of the RTT. This effect, especially notice-
able above the 90th percentile, is likely caused by TCP
timeouts and retransmissions. The TCP retransmit timers
have a fixed granularity of 500 ms in most implementa-
tions, which bears no relation to the RTT. Moreover, they
disrupt the pattern of data transmission, as the TCP con-
gestion window closes after each timeout-based retrans-
mission.

More quantitatively, we observe that the higher per-
centiles of file transfers were affected more than lower
percentiles by the presence of errors on the ATM link. We
show these effects for two different propagation delay val-
ues of 1 ms and 200 ms, in Table 7. This tendency was
generally present for all four propagation delay values we
tested, in the individual datasets as well as the aggrega-
tions presented here. This result is expected if we note that
long files, presumably accounting for long transfer times,
are more likely to suffer a link error while they are being
sent.

We noted an interesting effect in cases of very long
file transfer times, above the 95th percentile. In this
regime, the LLE-induced errors had proportionately more
effect across short-delay hops than across long-delay hops.
This trend was generally consistent across the individual

 Delay 1 ms 10 ms 100 ms 200 ms

Number 2105 2100 1986 1880

Mean 14.4 ms 55.2 ms 548.1 ms 975.7 ms

Min 3.5 ms 21.5 ms 201.5 ms 401.4 ms

Max 629.0 ms 951.0 ms 39029.5 ms 41959.7 ms

Median 8.2 ms 44.3 ms 404.3 ms 804.2 ms

TABLE 4. HTTP Page Retrieval Times on Error-
Free Link. Columns correspond to varying one-
way propagation delays.

FIGURE 5. Cumulative Distribution Function of
HTTP Page Retrieval Times, Error-Free Link.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 500 1000 1500 2000

C
D

F

HTTP Page Retrieval Time (ms)

1 ms propagation
10 ms propagation

100 ms propagation
200 ms propagation

2
20–

10
6–

 Delay 1 ms 10 ms 100 ms 200 ms

Number 5520 5929 4808 4342

Mean 114.3 ms 152.4 ms 655.0 ms 1088.0 ms

Min 3.5 ms 21.5 ms 201.5 ms 401.4 ms

Max 10845.1 ms 9533.8 ms 31836.3 ms 52017.8 ms

Median 8.1 ms 26.9 ms 207.9 ms 405.3 ms

TABLE 5. HTTP File Retrieval Times on a Lossy
ATM Link. Columns correspond to varying one-
way propagation delays.

7

runs, as well as the aggregation of all runs, although there
were some departures at 100 ms. We show this informa-
tion in Table 7. We believe that this effect is caused by the
TCP retransmit timers; in case of a timeout-based retrans-
mission, the 500 ms granularity will have a proportion-
ately greater effect on transfers across a short link because
it is a larger percentage of the link propagation time.

The effects of the lossy link on Web page retrieval
times were quite similar to those for individual Web files.
We present the former statistics, with the LLE in opera-
tion, in Table 8. Compared to the error-free trials in

Table 4, the mean retrieval times increased from 1.1 to 6.4
times.

Figure 7 pictures the CDF of page retrieval times. As
with file retrievals, the use of a lossy link had the effect of
spreading out the clustering of page response times from
around integer multiples of the RTT. This effect is visible
in the gradual disappearance of the “steps” in the CDF,
particularly noticeable with a 100 ms propagation delay, as
the retrieval time increases.

As with file retrievals using the emulated wireless
link, errors had a more pronounced effect on high-percen-
tile transfer times. For high percentiles, the effects of
errors were again more prominent on short-delay links
than on long-delay links.

5 Summary and Future Work

We have constructed the IP Benchmark (IPB), a tool
to investigate the performance of IP networks under the
simulated traffic loads of different applications. Our
approach relies on mimicking the network traffic patterns
of applications such as World Wide Web clients and serv-

Percentile Error-Free Wireless % Increase

70 12.2 ms 12.4 ms 1.6%

80 19.5 ms 22.8 ms 16.9%

90 35.8 ms 55.2 ms 54.2%

95 54.4 ms 769.2 ms 1314.0%

99 117.0 ms 2064.8 ms 1664.8%

TABLE 6. Comparison of File Response
Times at 1 ms One-Way Propagation Delay.

%-ile 1 ms 10 ms 100 ms 200 ms

70 1.6% 0.6% 0.0% -0.0%

80 16.9% 3.0% 0.3% 0.1%

90 54.2% 28.5% 25.1% 24.8%

95 1314.0% 389.0% 51.2% 27.8%

99 1664.8% 621.3% 69.8% 84.5%

TABLE 7. Percentage Increase in Transfer Times
Incurred by Lossy Link.

FIGURE 6. Cumulative Distribution Function of
HTTP File Retrieval Times, Lossy Link.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 500 1000 1500 2000

C
D

F

HTTP File Retrieval Time (ms)

1 ms propagation
10 ms propagation

100 ms propagation
200 ms propagation

 Delay 1 ms 10 ms 100 ms 200 ms

Number 2036 2231 1804 1654

Mean 92.7 ms 127.6 ms 644.2 ms 1099.6 ms

Min 3.5 ms 21.5 ms 201.5 ms 401.4 ms

Max 10845.1 ms 9555.6 ms 31836.3 ms 52420.2 ms

Median 8.4 ms 44.3 ms 404.4 ms 803.8 ms

TABLE 8. HTTP Page Retrieval Times on a Lossy
ATM Link. Columns correspond to varying one-
way propagation delays.

FIGURE 7. Cumulative Distribution Function of
HTTP Page Retrieval Times, Lossy Link.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 500 1000 1500 2000

C
D

F

HTTP Page Retrieval Time (ms)

1 ms propagation
10 ms propagation

100 ms propagation
200 ms propagation

8

ers, suitably regulated by transport protocol implementa-
tions. We measure the performance received from the
network and report these findings in terms of application-
specific metrics.

We have begun some measurements using this setup
to measure the performance of simulated World Wide Web
traffic. Our initial results show that over an emulated lossy
ATM link (with a bit error rate), the mean Web file
takes as much as seven times longer to transfer, with the
mean Web page taking up to four times longer to be
received. We observe the quantization of transfer times
around integer multiples of the link’s round-trip time. The
effects of the lossy link seemed to be most evident for the
longest transfers. Finally, we saw that the simulated wire-
less link had (proportionately) the largest effect when the
link had a short round-trip time.

There are a number of areas for future work. The
incorporation of more traffic types (such as CBR audio
and various types of network video), as well as updated
models of existing applications, would improve the utility
of ipb as a tool to predict network performance. With
respect to our measurements of emulated wireless and sat-
ellite networks, it would be useful to be able to “slow
down” the wireless link from its current OC-3 (155 Mbps)
rate to more realistic WATM radio speeds (typically tens
of megabits per second). Finally, incorporating a range of
different WATM network types into our wireless link emu-
lator would allow some comparisons between different
link types.

6 References

[1] The Apache Group. Apache software, 1995–1997. This soft-
ware is available at http://www.apache.org.

[2] Tim Berners-Lee and Daniel W. Connolly. Hypertext
Markup Language – 2.0. Internet Request for Comments
1866, November 1995.

[3] Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk
Nielsen. Hypertext Transfer Protocol – HTTP/1.0. Internet
Request for Comments 1945, May 1996.

[4] Peter B. Danzig and Sugih Jamin. tcplib: A library of TCP
internetwork traffic characteristics. Technical Report USC-
CS-91-495, Computer Science Department, University of
Southern California, Los Angeles, CA, 1991.

[5] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul,
Henrik Frystyk Nielsen, and Tim Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. Internet Request for Com-
ments 2068, January 1997.

[6] Bruce A. Mah. INSANE Users Manual. Computer Science
Division, University of California at Berkeley, May 1996.

[7] Bruce A. Mah. Quality of Service and Asynchronous Trans-
fer Mode in IP Internetworks. PhD dissertation, University
of California at Berkeley, December 1996.

[8] Bruce A. Mah. An empirical model of HTTP network traf-
fic. In Proceedings of IEEE INFOCOM ’97, Kobe, Japan,
April 1997.

[9] Walter Millikan. The Long Link Emulator: System Descrip-
tion. BBN Systems and Technologies, September 1993.

[10] Netscape Communications Corporation. Netscape Naviga-
tor software, 1994–1998. This software is available at http://
home.netscape.com/.

[11] Giao T. Nguyen, Randy H. Katz, Brian Noble, and Mahadev
Satyanarayanan. A trace-based approach for modeling wire-
less channel behavior. In Proceedings of the Winter Simula-
tion Conference, December 1996.

[12] Jon Postel. Transmission Control Protocol. Internet Request
for Comments 793, September 1981.

[13] Jon Postel and Joyce Reynolds. Telnet Protocol Specifica-
tion. Internet Request for Comments 854, May 1983.

[14] Squid Internet Object Cache, 1997. This software is avail-
able at http://squid.nlanr.net/Squid/.

[15] W. Richard Stevens. TCP Slow Start, Congestion Avoid-
ance, Fast Retransmit, and Fast Recovery Algorithms. Inter-
net Request for Comments 2001, January 1997.

[16] ttcp, 1991. This software is available at ftp://ftp.sgi.com/sgi/
src/ttcp/.

10
6–

