
Quality of Service and Asynchronous
Transfer Mode in IP Internetworks

by
Bruce Albert Mah

B.S. (University of California at Berkeley) 1991
M.S. (University of California at Berkeley) 1993

A dissertation submitted in partial satisfaction of the requirements for the degree of
Doctor of Philosophy

in
Computer Science

in the
GRADUATE DIVISION

of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Domenico Ferrari, Chair

Professor Randy H. Katz

Professor Ronald Wolff

Fall 1996

The dissertation of Bruce Albert Mah is approved:

University of California at Berkeley

1996

DateChair

Date

Date

Quality of Service and Asynchronous
Transfer Mode in IP Internetworks

Copyright  1996
by

Bruce Albert Mah
All rights reserved

1

Abstract

Quality of Service and Asynchronous Transfer Mode in IP Internetworks

by

Bruce Albert Mah

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Domenico Ferrari, Chair

The deployment of Asynchronous Transfer Mode (ATM) networks is a recent development

in the field of computer communication. When we attempt to use these networks as a part

of the global Internet, running the Internet Protocol (IP), we see a number of differences

between the data forwarding models of ATM (virtual circuits supporting performance guar-

antees) and IP (datagrams, usually best-effort). In our research, we have evaluated different

policies for IP-over-ATM networks to bridge the gaps between these two networks and to

make them function more efficiently together.

The differences between IP and ATM raise three issues. First is the question of how Internet

applications can take advantage of ATM quality of service facilities, without support from

other portions of the Internet. A second issue is that of determining which IP conversations

should be multiplexed onto a single ATM virtual circuit. Last is the problem of virtual cir-

cuit management, which determines when ATM connections should be established and

torn down.

We have examined different quality of service, multiplexing, and virtual circuit manage-

ment policies, and evaluated their relative merits from the standpoint of the performance of

typical Internet applications. Our evaluation used a simulation of a large IP internetwork

with a wide-area ATM backbone and a synthetic workload modeling the traffic generated

by common Internet applications. For this purpose, we implemented a new network simu-

lator, the Internet Simulated ATM Networking Environment (INSANE).

2

Our results show that the use of different scheduling algorithms and QOS parameters can

be used to express preference for certain applications, although some care must be taken to

avoid starvation effects. The use of jitter controlling schedulers in the ATM network can

be efficacious in reducing packet loss in long TCP bulk transfers. We see that multiplexing

can improve application performance due to a reduced need to set up ATM virtual circuits,

although interactions with some network service disciplines can negate these effects. Final-

ly, we show that caching idle virtual circuits for reuse is, in general, beneficial for both net-

work and application performance.

iii

Table of Contents

1. Introduction.. 1

1.1. Motivation.. 1
1.2. Dissertation Overview ... 2

2. Background .. 5

2.1 Internet Protocol... 5
2.2 Asynchronous Transfer Mode.. 7
2.3 Quality of Service in Packet-Switching Networks 10
2.4 Current IP over ATM Approaches... 12
2.5 IP-over-ATM Design Issues .. 16
2.6 IP-over-ATM Policies.. 17

3. Methodology ... 22

3.1 Introduction.. 22
3.2 Network Topology ... 24
3.3 Workload.. 27
3.3.1 Telnet .. 28
3.3.2 File Transfer Protocol ... 28
3.3.3 Hypertext Transfer Protocol ... 29
3.3.4 Simple Mail Transfer Protocol.. 29
3.3.5 The Network News Transfer Protocol .. 30
3.3.6 Audio... 30
3.3.7 Video... 30
3.3.8 Composite Workload .. 31
3.4 Evaluating IP over ATM Policies .. 32
3.5 Experimental Procedure... 34
3.5.1 Gathering Data .. 35
3.5.2 Analysis of Data.. 35
3.6 An Internet Simulated ATM Networking Environment 37
3.6.1 Datalink and Physical Layers.. 38
3.6.2 Internetwork Layer.. 41
3.6.3 Transport Layers ... 41
3.6.4 Application Layers.. 42
3.6.5 Simulator Implementation .. 42
3.7 Experience with INSANE.. 43

4. ATM Quality of Service and IP Conversations... 45

4.1 Introduction.. 45
4.2 Prior Work ... 47
4.3 Quality of Service Mechanisms ... 48
4.3.1 ATM Network Support for Quality of Service 48

iv

4.3.2 Packet Classification... 51
4.4 Static Priority Schemes .. 54
4.4.1 Single-Application Static Priority Policies ... 55
4.4.2 Combination Static Priority Policies... 60
4.5 Work-Conserving RCSP.. 61
4.5.1 Single-Application Work-Conserving RCSP Policies............................ 62
4.5.2 Combination Work-Conserving RCSP Policies 65
4.6 Non-Work-Conserving RCSP.. 65
4.6.1 Single-Application, Non-Work-Conserving RCSP Policies................... 66
4.6.2 Combined, Non-Work-Conserving RCSP Policies 68
4.7 Conclusions.. 70

5. IP over ATM Multiplexing Policies.. 73

5.1 Introduction.. 73
5.2 Prior Work ... 75
5.3 Multiplexing Policies Examined.. 76
5.4 Per-Application and Per-Conversation Multiplexing 78
5.4.1 Telnet .. 78
5.4.2 FTP.. 78
5.4.3 HTTP... 82
5.4.4 Audio... 85
5.4.5 Video... 85
5.5 Per-Router Multiplexing .. 85
5.5.1 Telnet .. 86
5.5.2 FTP.. 87
5.5.3 HTTP... 88
5.5.4 Audio... 89
5.5.5 Video... 89
5.6 Conclusions.. 90

6. Management of ATM Virtual Circuits Used for IP.. 92

6.1 Introduction.. 92
6.2 Prior Work ... 94
6.3 Virtual Circuit Management Schemes ... 94
6.4 Effects of Caching on Switched Virtual Circuit Performance................... 96
6.4.1 Telnet .. 96
6.4.2 FTP.. 96
6.4.3 HTTP... 99
6.4.4 Audio... 101
6.4.5 Video... 102
6.5 The Special Case of Per-Router Multiplexing ... 102
6.6 Cache Effectiveness ... 103
6.7 Conclusions.. 105

v

7. Conclusions ... 107

7.1 Summary of Contributions... 107
7.2 Future Work ... 109
7.3 Some Final Remarks .. 110

A. An Empirical Model of HTTP Traffic ... 112

A.1 Background .. 112
A.2 Prior Work ... 113
A.2.1 Server Logs ... 113
A.2.2 Client Logs.. 114
A.2.3 Packet Traces .. 114
A.3 Methodology .. 115
A.4 Model ... 116
A.5 Experimental Results ... 118
A.5.1 Anomalies ... 118
A.5.2 Request Length ... 119
A.5.3 Reply Length... 120
A.5.4 Page Length .. 122
A.5.5 User Think Time... 125
A.5.6 Consecutive Document Retrievals.. 126
A.5.7 Server Selection .. 127
A.6 Model Representation .. 129
A.7 Conclusions.. 131
A.8 Future Work ... 131

B. An Empirical Model of Internet Video .. 133

B.1 Introduction.. 133
B.2 Related Work ... 135
B.3 Methodology .. 135
B.4 Model ... 135
B.4.1 Packet Classification... 137
B.4.2 Packet Sizes .. 138
B.4.3 State Times.. 138
B.5 Model Representation .. 139
B.6 Conclusions.. 141

Bibliography.. 142

vi

List of Figures
Figure 2-1. The Internet Protocol Suite and Datalink Layers............................... 7
Figure 2-2. ATM Protocol Stack and Physical Layers ... 9
Figure 2-3. Block Diagram of a Rate-Controlled Static Priority Scheduler....... 12
Figure 2-4. IP over ATM Protocol Stack .. 13
Figure 2-5. Classical IP Model and Logical IP Subnets..................................... 14
Figure 2-6. IP-over-ATM Policy Space Axes... 18
Figure 2-7. IP-over-ATM Policy Space .. 20
Figure 3-1. XUNET II Backbone Topology ... 25
Figure 3-2. Logical Topology of Simulated ATM Backbone Network 26
Figure 3-3. Logical Topology of a Typical Local Site.. 27
Figure 3-4. Protocol Stack of INSANE .. 38
Figure 3-5. ATM Switch Composite Object ... 40
Figure 4-1. TCP/IP Header Fields Used for Conversation Keys........................ 51
Figure 4-2. Effects of sp-telnet Policy on Telnet Connect Times 56
Figure 4-3. Effects of sp-telnet Policy on Telnet Round-Trip Times.......... 56
Figure 4-4. Effects of sp-ftp Policy on FTP File Transfer Time 57
Figure 4-5. Effects of sp-ftp policy on FTP Session Times........................... 58
Figure 4-6. Effects of sp-ftp Policy on HTTP Performance.......................... 58
Figure 4-7. Effects of sp-audio Policy on Audio Loss Rate.......................... 59
Figure 4-8. Effects of wc-ftp Policy on FTP File Transfer Times.................. 63
Figure 4-9. Effects of wc-audio Policy on Audio Overdue Rate and

Loss Rate.. 64
Figure 4-10. Effects of nwc-ftp Policy on FTP Session Times........................ 67
Figure 4-11. Effects of nwc-audio Policy on Audio Loss Rate and

Overdue Rate ... 68
Figure 5-1. Per-Conversation Multiplexing.. 76
Figure 5-2. Per-Application Multiplexing .. 77
Figure 5-3. Per-Router Pair Multiplexing... 77
Figure 5-4. Performance Effects of app and conv Multiplexing on Telnet

Performance, sp-ftp QOS Policy .. 79
Figure 5-5. Performance Effects of app and conv Multiplexing on FTP

File Transfer Time, sp-ftp Policy .. 80
Figure 5-6. Performance Effects of app and conv Multiplexing on FTP

Session Time, sp-ftp Policy .. 80
Figure 5-7. Performance Effects of app and conv Multiplexing on FTP

File Transfer Times, nwc-ftp QOS Policy 81
Figure 5-8. Performance Effects of app and conv Multiplexing on FTP

Session Times, nwc-ftp QOS Policy ... 81

vii

Figure 5-9. Illustration of Interference Between Conversations Sharing an
ATM Virtual Circuit ... 82

Figure 5-10. Performance Effects of app and conv Multiplexing on HTTP
Item Retrieval Time, sp-http Policy ... 83

Figure 5-11. Performance Effects of app and conv Multiplexing on HTTP
Item Retrieval Time, sp-http Policy ... 83

Figure 5-12. Performance Effects of app and conv Multiplexing on HTTP
Item Retrieval Time, nwc-http Policy... 84

Figure 5-13. Performance Effects of app and conv Multiplexing on HTTP
Page Retrieval Time, nwc-http Policy .. 84

Figure 5-14. Effect of router Multiplexing on Telnet Connect Times 86
Figure 5-15. Performance Effects of router Multiplexing on FTP File

Transfer Times ... 87
Figure 5-16. Performance Effects of router Multiplexing on FTP Session

Times.. 88
Figure 5-17. Effect of router Multiplexing on Audio Loss and Overdue

Rates... 89
Figure 6-1. Performance Effects of Virtual Circuit Caching on Telnet

Connect Times, wc-telnet QOS Policy 97
Figure 6-2. Performance Effects of Virtual Circuit Caching on Telnet

Round-Trip Times, nwc-telnet QOS Policy.............................. 97
Figure 6-3. Performance Effects of Virtual Circuit Caching on FTP File

Retrieval Times, sp-ftp QOS Policy ... 98
Figure 6-4. Performance Effects of Virtual Circuit Caching on FTP Session

Times, sp-ftp QOS Policy ... 98
Figure 6-5. Performance Effects of Virtual Circuit Caching on FTP Session

Times, wc-ftp QOS Policy ... 99
Figure 6-6. Performance Effects of Virtual Circuit Caching on HTTP

Item Retrieval Times, nwc-http QOS Policy 100
Figure 6-7. Performance Effects of Virtual Circuit Caching on HTTP

Page Retrieval Times, nwc-http QOS Policy............................ 100
Figure 6-8. Performance Effects of Virtual Circuit Caching on Audio Loss

and Overdue Rates, sp-qos1 Policy ... 101
Figure 6-9. Performance Effects of Virtual Circuit Caching on Video Loss

Rate, sp-ftp QOS Policy.. 102
Figure A-1. Cumulative Distribution Functions of HTTP Request Lengths..... 120
Figure A-2. Cumulative Distribution Functions of HTTP Reply Lengths 121
Figure A-3. Heuristic for Determining the Relation Between Two HTTP

Connections.. 123
Figure A-4. Cumulative Distribution Functions of Document Length in

Files, 19 September 1995... 125
Figure A-5. Cumulative Distribution Functions of User Think Times 126

viii

Figure A-6. Pseudo-Code for a Simple HTTP Client.. 130
Figure A-7. Pseudo-code for a Simple HTTP Server.. 131
Figure B-1. Two-State Model of Video Source... 136
Figure B-2. Scatterplot of 20,000 Packets... 137
Figure B-3. Cumulative Distribution Functions of Packet Sizes 139
Figure B-4. Cumulative Distribution Functions of State Times........................ 139
Figure B-5. Pseudo-code for a Simple Internet Video Source 140

ix

List of Tables
Table 2-1. Scheduling Disciplines... 18
Table 2-2. Multiplexing Policies ... 18
Table 2-3. Virtual Circuit Management Policies... 19
Table 3-1. Internet Applications.. 23
Table 3-2. Application Workload for a Single Site ... 31
Table 3-3. Application-Specific Performance Metrics...................................... 33
Table 3-4. Components of IP-over-ATM Policies... 35
Table 4-1. Summary of Quality of Service Results... 47
Table 4-2. Scheduling Priority Levels and Local Delay Bounds 49
Table 4-3. Parameters Given to Signalling System to Establish a Virtual

Circuit .. 50
Table 4-4. Rate-Controlled Static Priority Variants .. 50
Table 4-5. QOS Parameters By Conversation Type.. 53
Table 4-6. Scheduling Priority Levels for Static Priority Policies 55
Table 5-1. Summary of Multiplexing Results ... 75
Table 6-1. Summary of Virtual Circuit Management Results........................... 93
Table A-1. Summary of Traffic Traces .. 116
Table A-2. Quantities Modeled.. 117
Table A-3. Selected Measurement Results .. 119
Table A-4. Summary of HTTP Request Lengths (in Bytes) 120
Table A-5. Summary of HTTP Reply Lengths (in Bytes) 121
Table A-6. Estimates of the Parameter for the Tail of HTTP Reply

Size Distributions... 122
Table A-7. Mean and Median Number of Files Per Document,

. ... 125
Table A-8. User Think Times in Seconds .. 126
Table A-10. Cumulative Distribution Functions for Consecutive Document

Retrievals ... 127
Table A-9. Consecutive Document Retrievals Per Server Access................... 127
Table A-11. Top Ten Servers Observed, 19 September 1995 128

α

Tthresh 1 sec=

x

Acknowledgments

I would first like to thank my advisor, Professor Domenico Ferrari, for his guidance and

encouragement through the past seven years (and three degrees!). I am truly fortunate to

have been one of his students; he gave me the intellectual freedom to define the path of my

research and the support to help me see this work to completion. I also appreciate the extra

effort required for him to advise and assist me remotely, from half-way around the world.

Professor Randy H. Katz served on my thesis committee and was the chair of my qualifying

exam committee. He was also my local “sounding board” for ideas, and I have greatly ben-

efitted from his wisdom and advice.

Finally, thanks are due to Professor Ronald W. Wolff, for serving on my thesis committee

(again, across an ocean!) and qualifying exam committee. Also, my gratitude to Professor

Jean Walrand, for serving on my qualifying exam committee.

I am also indebted to Elan Amir, Kimberly Keeton, and Venkata N. Padmadabhan for their

helpful comments on various portions of this work.

Also important were the valuable insights and inputs from the members of the Tenet Group

at the University of California at Berkeley. In particular, Anindo Banerjea, Ramón Cáceres,

Riccardo Gusella, Mark Moran, Dinesh Verma, and Hui Zhang helped to initiate me into

the world of networking research. Thanks to S. Keshav and Steve McCanne for serving as

(perhaps unknowing) inspirations to try for higher standards of excellence. I have benefit-

ted from many conversations with Amit Gupta, Wendy Heffner, Edward Knightly, and

Colin Parris.

I’d like to acknowledge the assistance of the members of the XUNET II project at AT&T

Bell Laboratories. In particular, thanks to Sandy Fraser and Ravi Sethi for their commit-

xi

ments to the XUNET summer program, to Chuck Kalmanek for his advice and encourage-

ment, and to S. Keshav and Pat Parseghian for their patience and for sharing their technical

expertise.

Funding for this research was provided by AT&T Bell Labs, Corporation for National Re-

search Initiatives, the United States Department of Energy (DE-FG03-92ER-25135), Dig-

ital Equipment Corporation, Hitachi, International Computer Science Institute, Mitsubishi

Electric Research Laboratories, the National Science Foundation and the Advanced Re-

search Projects Agency (NCR-8919038), and Pacific Bell. I also wish to thank the National

Science Foundation for their support in their form of an NSF Graduate Fellowship.

The network simulations described in this work were performed using computers belong-

ing to the Network of Workstations (NOW) project at the University of California at Ber-

keley. I am grateful to this group for the use of their resources, and especially to Eric Fraser,

Douglas Ghormley, and Amin Vahdat for their technical assistance.

On a more personal note, I’d like to thank all of my friends for their encouragement and

advice (as well as their tolerance!), especially Hari Balakrishnan, Judy Chan, Kimberly

Keeton, Jeanna Neefe Matthews, Venkata N. Padmanabhan, and Srinivasan Seshan.

Last (but certainly not least), thanks to my parents, Albert and Phyllis Mah, for all their sup-

port, especially during my college and graduate career.

1

1 Introduction

1.1. Motivation

This research brings together two very different networking “worlds”. One is that of Asyn-

chronous Transfer Mode (ATM) networks. This technology is designed to carry a wide

variety of audio, video, and data traffic, and is presently growing in popularity. Network

users are turning to ATM as a solution for applications that require high bandwidth or guar-

anteed performance.

The other world is that of the nearly-ubiquitous global Internet. The explosive growth of

the Internet, both in terms of its logical size and the amount of traffic it carries, is well-

known. More than a single network, it is a heterogeneous collection of networks incorpo-

rating a wide range of technologies from dial-up modems to high-speed fiber-optic links.

An important, practical problem is to make IP and ATM networks function together in an

efficient and effective manner, which draws on the strengths of both. However, this goal

raises several technical challenges, brought about by basic differences in the architectures

of these two types of networking systems.

There are three basic differences that create problems when we try to make these two dis-

similar types of networks interoperate. The first arises from the different data forwarding

models of IP (connectionless) versus that of ATM (connection-oriented). Because the

Internet has no connections in its network layer, ATM portions of the Internet need to infer

the appropriate times to establish and close connections.

Another difference is the types of quality of service support provided by the networks.

ATM allows users to specify the quality of service (for example, a minimum throughput

or a maximum delay) they desire from the network. An ATM service can guarantee per-

2

formance for all data sent on a connection, until the connection is closed. By contrast, the

Internet has no support for end-to-end quality of service; all packets are treated equally.

Although efforts are underway to provide differential treatment for different types of traf-

fic in the Internet, this support is not widespread, let alone ubiquitous.

A final difference is the nature of packets supported by the two networks. In ATM, packets

are small and fixed-size. A segmentation and reassembly protocol needs to be used in order

to support the larger, variable-sized packets that are normally assumed by the Internet pro-

tocol stack.

These differences motivate three critical design issues for the integration of IP and ATM,

issues that are the focus of this work. First, Internet applications should be able to take

advantage of the quality of service features of an ATM subnet, even though surrounding

portions of the Internet may not be able to provide such support.

Another issue is that of multiplexing. Some efficient policy is required to select the packets

that share a given ATM virtual circuit. These packets could all belong to the same IP con-

versation, or parts of different ones.

The final issue relates to the management of virtual circuits. Because IP has no connections

at its network layer, some set of policies and mechanisms are required to infer appropriate

times for ATM virtual circuits to be established and closed.

1.2. Dissertation Overview

In this dissertation, we investigate the effects of different policies for using Asynchronous

Transfer Mode (ATM) networks to carry packets for the Internet Protocol (IP). We focus

on evaluating alternatives for these policies with respect to the end-to-end performance

that they deliver to applications commonly seen on the Internet.

In Chapter 2, we present some background on both the IP and ATM protocol stacks. We

also provide an introduction to the three IP-over-ATM design issues we investigated in this

study.

3

Chapter 3 discusses the methodology we used to evaluate different alternatives in IP-over-

ATM designs. We include a description of a new network simulator, the Internet Simulated

ATM Networking Environment (INSANE), and show how we used it to measure the per-

formance of several simulated Internet applications in a heterogeneous network of more

than a thousand hosts.

We present of the use of different IP-over-ATM quality of service policies in Chapter 4,

along with the implications for end-to-end Internet application performance. We examined

four different ATM service disciplines and experimented with a variety of policies to use

these mechanisms for giving preference to different types of applications. We show that a

static priority scheme (if used carefully) can be effective providing differential treatment

to different Internet applications. The policing provided by performance-guaranteed ATM

services can prevent bulk transfers from monopolizing the network, however the subse-

quent benefits derived by other applications are uncertain.

In Chapter 5, we discuss the impact of three IP-over-ATM multiplexing policies. These

policies vary the granularity with which IP packets are mapped onto virtual circuits in an

ATM network. We see that aggregating several IP conversations onto a common virtual

circuit improves the performance of short transfers. Longer conversations may fare better

if carried by their own virtual circuits, although this result is dependent on the scheduling

policy used over the ATM network.

Chapter 6 shows the effects of different policies for managing virtual circuits in an IP-

over-ATM network. We look, in particular, at three different policies for setting up and

tearing down virtual circuits being used to carry Internet traffic. We show that the perfor-

mance of applications using switched virtual circuits can be improved by caching idle con-

nections for reuse by subsequent conversations.

Finally, in Chapter 7, we present our conclusions and some thoughts for future work in this

area.

Our network simulations relied on having reasonably accurate models of the network

activity generated by common Internet applications. In two cases, we needed to develop

4

new models, because existing ones were either non-existent or not applicable. We discuss

this work in two appendices. In Appendix A, we present an empirical model of traffic gen-

erated by the HyperText Transport Protocol (HTTP), as used by World Wide Web appli-

cations.

Appendix B describes a similar model for Internet video traffic, based on a trace taken

from the MBONE video applications vic and vgw.

5

2 Background

Using IP and ATM together presents some interesting challenges because they differ in

fundamental ways, from their respective models of data forwarding (connectionless vs.

connection-oriented) to support for the preferential treatment of packets (no support vs. the

potential for hard guarantees). This chapter provides background information on these two

different types of networks, and some of the issues that are involved when attempting to

make them interoperate.

In Section 2.1, we present a brief background of the Internet Protocol. Asynchronous

Transfer Mode networks are described in Section 2.2. Section 2.3 describes some work in

the provision and use of quality of service in packet-switching networks such as ATM. In

Section 2.4, we describe some current approaches to running IP over ATM networks. In

Section 2.5, we discuss some remaining, fundamental problems and show how they moti-

vate the issues that are the subjects of our research. Finally, in Section 2.6, we present some

design alternatives for solutions to these problems.

2.1 Internet Protocol

In the current Internet, the network layer protocol used for forwarding data across and

between subnets is the Internet Protocol (IP) [Postel81a]. IP is a connectionless protocol;

packets (also referred to as datagrams) are sent and received independently of each other.

This approach allows a host to send packets to a destination without first needing to set up

state information in intermediate routers along the path to be taken by data.

IP is almost entirely independent of the technology used to transport packets. It makes few

assumptions about the nature of individual subnets used to forward data. IP packets can

traverse many subnets without either the senders or receivers being aware of the details or

6

types of the networks encountered along the path between them. Although IP generally

does not deliberately drop (discard) packets, no attempt is made to provide reliability (in

other words, to guarantee that data sent will be correctly received).1

Internet applications typically do not use IP directly. Rather, they employ higher-layer pro-

tocols, which provide services more appropriate to the needs of the applications. A com-

monly-used transport protocol, layered on top of IP, is the Transport Control Protocol

(TCP) [Postel81b]. TCP provides reliable, in-order delivery of streams of bytes. It is con-

nection-oriented; thus the endpoints of a TCP conversation must handshake to establish

connection state before any data packets are sent. Because TCP is implemented using IP’s

unreliable datagram service, it uses acknowledgments, timeouts, and retransmissions to

ensure that data is correctly received by the destination. TCP also implements algorithms

for flow control and congestion control [Jacobson88].

The other transport protocol commonly used with IP is the User Datagram Protocol (UDP)

[Postel80]. UDP furnishes a service very similar to that of “raw” IP; it provides the unre-

liable delivery of datagrams to user programs. Applications using UDP typically either

implement their own reliability protocol (for example, as done in Sun RPC [Sun

Microsystems88]) or do not require reliable transport of data (as in the case of typical

applications transporting audio and video).

TCP, UDP, and IP, together with other higher-layer protocols not discussed here, collec-

tively form the Internet protocol suite, pictured in Figure 2-1. Additional details on the

Internet protocol suite can be found in [Stevens94].

The Internet Engineering Task Force is currently designing a successor to IP, known as IP

Version 6 or IPv6. IPv6 is a network-layer protocol which addresses the primary limitations

of IP, while retaining much of the same basic protocol architecture [Deering96]. Among

the new features of IPv6 are an expanded address space (128-bit addresses vs. 32-bit IP

addresses), ease of route aggregation for scalability, a redesigned packet header for effi-

1. One instance of a situation in which packets are deliberately dropped is a firewall, which enhances net-
work security by restricting the packets that can be forwarded to or from a network.

7

cient packet processing, and explicit support for security and authentication. In the context

of IPv6, the original Internet Protocol is referred to as IP version 4, or IPv4. For the most

part, IPv6 is similar enough to IPv4 that most of this work (which deals with IPv4) is appli-

cable to the newer protocol as well.

2.2 Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM) is a new network technology designed for “inte-

grated services” networks capable of carrying multimedia data as well as conventional

computer data traffic [ATM Forum95]. ATM is a connection-oriented service that trans-

fers small, fixed-sized packets called cells through a switch-based network. Although it

makes no promises of reliable delivery, cells that are actually delivered are guaranteed to

be in-order.

ATM’s small, fixed-size cells (48 payload bytes) are hardly suitable for network protocols

such as IP, which are designed to use larger, variable-sized frames. To address the require-

ments of such network applications, an ATM Adaptation Layer (AAL) protocol fragments

larger, variable-sized packets into cells for transmission and reassemble them upon arrival

at their destinations. The AAL typically used to transport IP packets is known as AAL 5

[Heinanen93]. (Other AAL protocols serve a variety of purposes, such as timing and syn-

Internet Protocol (IP)

Transmission Control Protocol (TCP) User Datagram Protocol (UDP)

Ethernet FDDI

Figure 2-1. The Internet Protocol Suite and Datalink Layers.

Other Datalink Layers

Higher-Layer Protocols

Applications

8

chronization of continuous media data. Not all of them provide fragmentation and reassem-

bly.)

Because ATM is connection-oriented, it requires a signalling protocol to set up the for-

warding tables in the network switches along the path to be taken by data. ATM signalling

also needs to reserve network resources for guaranteed-performance connections. In ATM

User-Network Interface (UNI) 3.1-compliant networks, this connection establishment is

done using the Q.2931 signalling protocol. Although ATM networks do not provide reli-

able delivery of data, their signalling protocols can be greatly simplified if they can be

assured of reliable transport of signalling messages. In the UNI 3.1 standard, this function-

ality is performed by a specialized Signalling ATM Adaptation Layer (SAAL) [ATM

Forum95].

ATM uses a Virtual Circuit Identifier (VCID) in the ATM cell header to identify the con-

nection to which each cell belongs. VCIDs are local to a link; thus, the cells for a given

connection may have different VCIDs as they traverse the ATM network. Assignment of

VCIDs to a connection is a part of the setup done by ATM signalling.

The ATM protocol stack according to [ATM Forum95] is shown in Figure 2-2. We note

that ATM networks not complying with this standard will have a different (but probably

similar) protocol stack. For example, the XUNET II experimental ATM testbed network

described in [Fraser92] implements its own adaptation layer, similar to AAL 5. Its signal-

ling is provided by a proprietary signalling protocol, which incorporates its own reliability

functionality.

With the appropriate scheduling disciplines in the network switches and support in the sig-

nalling software, ATM networks have the potential to provide real-time2 performance

guarantees, such as bounds on bandwidth and packet loss. These performance guarantees

are likely to be necessary for many network applications, such as digital audio and video

[Ferrari90]. The ATM Forum has defined a number of traffic classes, performance param-

2. By “real-time”, we refer to a service that can provide mathematically provable bounds or guarantees on
performance.

9

eters, and interfaces for the support of different qualities of service. Unfortunately, no set

of specific algorithms for supporting these services has been defined.

Therefore, we chose to study a hypothetical ATM networking environment that does not

conform to ATM Forum standards, but has a set of well-known algorithms for providing

performance guarantees. We rely only on the following abstract properties of ATM net-

works:

• ATM is a switch-based network, with point-to-point links between switches. By con-

trast, many popular LANs such as Ethernet are multiple-access, shared-media net-

works.

• ATM is connection-oriented (as opposed to datagram-based). There is some signalling

protocol capable of setting up virtual circuits and (if necessary) performing the neces-

sary admission control tests. In place of Q.2931 signalling, our simulated network uses

a protocol based heavily on the Real-Time Channel Administration Protocol (RCAP),

the signalling protocol used in the Tenet Real-Time Protocol Suite [Mah93].

Other PHY LayersSONET DS-3

Asynchronous Transfer Mode (ATM)

Signalling ATM Adaptation Layer
(SAAL)

Signalling (Q.2931)

ATM Adaptation Layers 1-5
(AAL 1-5)

Higher-Layer Protocols

Applications

Figure 2-2. ATM Protocol Stack and Physical Layers.

10

• ATM can support performance guarantees. Although we make no assumptions for the

mechanism for providing guarantees, we do assume a well-defined interface. Our net-

work uses different versions of Rate-Controlled Static Priority Queueing (RCSP) as

scheduling mechanisms (along with appropriate admission control tests) to provide

performance guarantees [Zhang93a].

Although a fairly recent innovation, ATM is currently gaining popularity. However, it is

uncertain whether or not ATM will become a ubiquitous, dominant network technology.

The existing installed base of Local Area Networks (LANs) such as Ethernet is consider-

able; replacing these networks with ATM will be costly, and in many cases unnecessary.

For the foreseeable future, it appears that large-scale connectivity will continue to involve

multiple, heterogeneous networks, and appropriate internetwork layer protocols. It seems

likely that ATM networks will be used as wide-area backbones, connecting existing, non-

ATM LANs.

2.3 Quality of Service in Packet-Switching Networks

The issue of providing quality of service support in packet-switching networks (such as

ATM) has received considerable attention. By “quality of service”, we specifically refer to

the differential treatment of packets in the network, usually depending on the requirements

of the network applications or on administrative constraints. For example, packet video

applications need some minimum throughput in order to deliver a usable picture quality.

Certain types of remote control applications require a bound on network delay in order to

make operation feasible and tolerable for the end user.

Our views on quality-of-service and guaranteed service are based on the Tenet approach

to real-time communication in packet-switching networks. The Tenet approach provides

strict, mathematically-provable performance guarantees that will hold even under worst-

case conditions of network load [Ferrari94]. This method places several requirements on

the network. First, the data forwarding entities (e.g. routers and switches) must use suitable

queueing and scheduling algorithms when processing network packets. A large class of

scheduling disciplines fit this requirement, including Earliest Due Date [Ferrari89], Hier-

archical Round Robin [Kalmanek90], and Rate-Controlled Static Priority [Zhang93a].

11

The second requirement is that network sources must be able to characterize their traffic

characteristics (e.g. peak and average sending rate) and their performance requirements

(e.g. delay or delay jitter). This information will typically be provided to the network at

connection setup time. If a connection is accepted by the network, the connection estab-

lishment is treated as a contract between the application and the network, whereby the net-

work agrees to provide the requested performance as long as the application adheres to its

traffic characteristics.

Finally, there must be a procedure for performing admission control when connections are

established. An admission control procedure determines, based on the current state of allo-

cated network resources, whether or not the network can accept a new connection and still

meet all of its promised guarantees. Note that the admission control tests must take into

account the worst-case traffic patterns, subject to the sources’ traffic characteristics, and

ensure that all guarantees will still apply at all times.

The realization of the Tenet approach in this work is based on Rate-Controlled Static Pri-

ority (RCSP) queueing in the output ports of ATM switches. Conceptually, an RCSP queue

consists of two parts, a static priority scheduler and a rate controller (see Figure 2-3). The

static priority scheduler buffers cells before they can be sent to the output. Each cell is

assigned a priority, based on the connection to which it. Whenever the output link is free,

the scheduler transmits the highest-priority cell it has buffered.

The rate controller regulates the flow of cells into the static priority scheduler. Due to vari-

able queueing delays caused by queueing, the spacing of cells along a given connection

may become distorted as the cells travel along the path of a connection. This effect, known

as jitter, requires extra buffering in downstream queues in order to absorb bursts. The pur-

pose of the rate controller is to either completely or partially reconstruct the input traffic

pattern before cells are allowed into the scheduler, thus reducing the buffer requirements.

This reconstruction is accomplished by delaying selected cells for a connection until those

cells conform to the original traffic specifications supplied by the source at connection

setup time.

12

One potential disadvantage imposed by the use of a rate controller is that the RCSP queue

becomes non-work-conserving; in other words, the output link may remain idle, even when

there are cells queued in the rate controller. This effect may lead to some unnecessary

delays for cells. In our study of different QOS policies, we have experimented with replac-

ing some of the RCSP queues in the ATM network with work-conserving variants.

2.4 Current IP over ATM Approaches

As ATM and the Internet will likely co-exist in the foreseeable future, it is desirable that

hosts using either (or both) of these types of networks be able to communicate. One

approach to interoperability is for IP to use an ATM network (with an appropriate adapta-

tion layer) as a datalink layer, in the same way that Ethernet and FDDI are commonly used.

Conversely, the ATM protocol stack views IP as an application. The use of these two pro-

tocol stacks together in this way is commonly referred to as IP over ATM. The resulting

protocol stack is shown in Figure 2-4.

OutputInput

Best-Effort Queue

Priority Queues

Regulators

Rate Controller (contains
per-connection regulator queues)

Static Priority Scheduler
(contains one queue per

priority level, plus a
best-effort queue)

Figure 2-3. Block Diagram of a Rate-Controlled Static Priority Scheduler. The per-
connection queues in the rate controller “shape” the traffic so that it corresponds to the

source’s traffic specification. Packets are then admitted to the scheduler, which transmits
data to the output by priority level.

13

There are several approaches to IP over ATM, each of which defines a slightly different

relationship between the ATM network and the IP internetwork. Our research fits well

within the framework of three popular models being advanced within the networking com-

munity. Although they differ in details, our work treats them almost identically.

The first model is the Classical Model of IP over ATM [Laubach94], proposed by the IP

over ATM working group within the Internet Engineering Task Force (IETF) 3. In this par-

adigm, an ATM network can support one or more IP subnets (referred to as Logical IP Sub-

nets or LISs in the literature).4 Hosts and routers belonging to the same subnet can

exchange data directly, using virtual circuits to forward IP packets across the ATM net-

work. Two hosts belonging to different subnets (but attached to the same ATM network)

can only communicate via a router that is a member of both subnets. Figure 2-5 illustrates

the flow of data in this scenario. While classical IP over ATM is potentially inefficient in

3. We note that the IP over ATM and Routing Over Large Clouds working groups merged in May 1996.
The combined group, referred to as Internetworking Over Non-Broadcast Multiple Access (ION), continues
the work of both of its ancestors [ION96].

4. Scalability and efficiency concerns may make it desirable to divide the hosts attached to an ATM net-
work into several subnets if the ATM network is large.

Internet Protocol (IP)

Transmission Control Protocol (TCP) User Datagram Protocol (UDP)

Ethernet FDDI

Higher-Layer Protocols

Applications

Q.2931

SAAL
AAL5

ATM

SONET DS3 Other

igure 2-4. IP over ATM Protocol Stack. Different ATM networks will likely have similar
adaptation layer and signalling components replacing AAL5, Q.2931, and SAAL in the

above protocol stack.

14

that a path between ATM-connected hosts may require forwarding through a router, it has

the advantage of preserving the original semantics of IP subnets.

Another approach, taken by the Routing Over Large Clouds (ROLC) working group of the

IETF, seeks to remove the potential inefficiency of the classical model. In the ROLC

model, hosts attached to the same ATM network can communicate directly, even if they

do not belong to the same LIS. Since part of the original IP routing model dictates that hosts

on different subnets must communicate via a router (rather than directly), this method

forces changes to the way that IP routing and forwarding is performed. A Next-Hop Rout-

ing Protocol (NHRP) [Luciani96] communicates the routing information necessary to send

data between subnets directly across the ATM network.

A third paradigm, proposed by the ATM Forum, is LAN Emulation (commonly abbrevi-

ated LANE or LE) [LANE95]. LANE’s approach is to make an ATM network appear as a

IEEE 802-compliant local-area network. Thus the units of data that are transmitted are

Host B
LIS 1

Host A
LIS 1

Host C
LIS 1
LIS 2

Host D
LIS 2

ATM Network

Figure 2-5. Classical IP Model and Logical IP Subnets. Host A can communicate directly
ith host B because the two are a part of the same subnet. However, hosts A and D belong

to different subnets, and must route their communication through an intermediate router
(host C), even though the two are attached to the same ATM network.

15

IEEE 802 frames, rather than IP packets. This paradigm is quite similar to Classical IP, but

supports multiple network protocols (such as IPX or AppleTalk) in addition to IP.

For simplicity’s sake, we chose the Classical IP approach as our model of IP over ATM.

However, all three approaches can be viewed identically, for the purposes of this research.

Their most important commonality is that ATM-attached hosts transmit IP packets to other

hosts across ATM virtual circuits. When the cells making up an IP packet exit the ATM

network, the IP packet is reassembled, and forwarding of the packet continues according

to standard IP routing (if necessary). Thus, an ATM network is treated as a link layer by

IP and the larger Internet.

There exist other schemes for using IP and ATM together, with various degrees of com-

patibility with the designs explored in this work. For example, various cell-based routers

(plus attendant algorithms) have been proposed and described, for example [Parulkar95],

[Ipsilon96], and [Newman96c]. These devices are hybrid devices, part IP router and part

ATM switch. Essentially, they perform packet forwarding for IP packets along virtual cir-

cuits established between adjacent switches. When instructed to, they can establish end-to-

end (or hop-by-hop) virtual circuits; packets are then forwarded on a per-cell basis, without

the need for IP protocol processing at every intermediate hop.

TCP and UDP over Lightweight IP (TULIP) and TCP and UDP over a Nonexistent IP

Connection (TUNIC) define new methods for eliminating some or all of the Internet pro-

tocol headers across an ATM network [Cole96]. [Newman96a] and [Newman96b] offer

similar, more concrete protocols, in the same vein. We believe that our techniques could

potentially extend to these environments as well.

IP routers supporting tag switching [Rekhter96] use identifiers similar to ATM VCIDs to

streamline packet forwarding. Unlike VCIDs, tags are considered to be merely an optimi-

zation (avoiding the IP routing table lookups normally performed for each packet).

Another difference is that allocation of tags is intended to be driven by routing changes,

rather than the transmission of data. Subject to these differences, the ideas we explore in

this work are probably applicable.

16

2.5 IP-over-ATM Design Issues

The current approaches to IP-over-ATM described in Section 2.4 are primarily concerned

with providing basic connectivity. As such, they deal largely with issues such as routing

and address resolution, which address the fact that ATM is a non-broadcast, multiple

access network. However, they do not address certain design issues arising from basic dif-

ferences in the nature of IP and ATM networks.

We note three fundamental differences between IP and ATM networks. First are conflict-

ing connection models. IP is connectionless; every packet is sent on an individual basis and

is delivered to its destination independently of every other packet. By contrast, ATM is

connection-oriented. It requires that network state be set up for a stream of packets before

that data can be transmitted.

Another difference is the quality of service models of the two networks. The ATM signal-

ling protocol used to establish connections also allows users to specify the performance

they require from the network (for example, a minimum throughput or a maximum loss

rate). If the network can support a new connection and its performance requirements, it can

guarantee that the set of packets sent on a connection will be given the required quality of

service. IP, on the other hand, has no end-to-end quality of service features (the RSVP pro-

tocol and integrated services work are intended to address this shortcoming, but such sup-

port is not currently widespread).

The third contrast is the nature and size of packets supported by IP and ATM. In ATM net-

works, cells are small and fixed-sized. IP, by contrast, is designed around medium-sized,

variable-length packets.

These three basic differences motivate three design issues, which are the subject of this

research. Our first issue deals with extending the QOS features of an ATM network to IP

applications. Although IP in its current form has no provision for QOS support, the under-

lying ATM subnet has the capability to offer performance guarantees. We would like,

therefore, for Internet applications to gain some of the benefits of ATM performance guar-

antees, without end hosts or applications necessarily being aware of this capability.

17

Another issue concerns the degree of multiplexing to be used on ATM virtual circuits. At

one extreme, ATM-attached routers could provide unique virtual circuits for individual

network conversations (such as single TCP connections). At the other extreme, they could

use virtual circuits as trunks carrying traffic for many conversations passing between a pair

of routers. One could easily imagine hybrid schemes as well, which might use dedicated

virtual circuits for some traffic and route all other packets via default trunk-like connec-

tions.

A third design consideration is that of virtual circuit management. Because IP is connec-

tionless, there is no explicit notification as to when underlying virtual circuits should be set

up or torn down. Some heuristic must be used to infer appropriate times for these actions.

Different schemes involve using permanent virtual circuits established at network startup

time, or switched virtual circuits that are set up on demand and torn down when idle. Spe-

cific design choices dictate idle timeout values and whether or not virtual circuits can be

cached for reuse by other IP conversations.

ATM-attached hosts and routers implement policies to address each of these issues. To a

certain extent, these policies can be implemented (and investigated) separately from each

other. Thus three design issues can be viewed as three parameter axes, denoting a space of

possible policies. Points within this design space correspond to design policies, made up

from a combination of QOS, multiplexing, and virtual circuit management policies. The

axes for this space are shown graphically in Figure 2-6.

2.6 IP-over-ATM Policies

In this section, we briefly summarize the alternatives we investigated for QOS, multiplex-

ing, and virtual circuit policies. We then fit them into the framework of the “policy space”

described in Section 2.5.

To address the quality-of-service issue, we investigated a number of policies, which used

various scheduling disciplines in the ATM network to express precedence for certain Inter-

net applications. We list the various scheduling disciplines in Table 2-1 (more details can

18

be found in Table 4-5 and Table 4-6). These schedulers control the transmission of cells

from the output queues of ATM switches.

Our investigation of multiplexing led us to examine three policies, which perform increas-

ing degrees of aggregation of traffic onto ATM virtual circuits. We summarize them in

Table 2-2.

Name Scheduler Remarks

noqos First-Come-First-Served A best-effort service only, with all cells treated
identically.

sp Static Priority Simple static priority scheme, no rate control.

wc Work-Conserving Rate-Con-
trolled Static Priority

RCSP variant. Work-conserving refers to the fact
that this type of queue will always transmit a cell if
one is available.

nwc Non-Work-Conserving Rate-
Controlled Static Priority

RCSP variant implementing rate jitter control. Due
to jitter control, this scheduler is non-work-con-
serving.

Table 2-1. Scheduling Disciplines.

Name Policy

conv Virtual circuit per IP conversation (e.g. TCP connection or UDP flow)

app Virtual circuit per application type per host pair.

router Virtual circuit per pair of routers, carrying all traffic passing through the pair of routers,
regardless of source or destination host.

Table 2-2. Multiplexing Policies.

QOS Axis

Multiplexing Axis

Virtual Circuit Management Axis

Figure 2-6. IP-over-ATM Policy Space Axes. Each axes represents a set of design
alternatives to address a specific design issue. With certain limits, these policies can be

varied and investigated independently.

19

Finally, we investigated the effects of three different virtual circuit management policies,

as summarized in Table 2-3.

We describe the various IP-over-ATM policies by the names of the QOS, multiplexing,

and virtual circuit management policies that make them up. For example, an experimental

configuration of sp-telnet-conv-svccache indicates a scenario where a static pri-

ority scheme was used to give preference to telnet applications, with multiplexing done on

a per-conversation basis, and with switched virtual circuits cached for reuse.

The specific instances of the three types of policies form the set of possible values along

each of the axes in the IP-over-ATM policy space. Points in this space correspond to spe-

cific IP-over-ATM policies that we evaluated in the course of this work. We show them in

Figure 2-7.

We observe that these axes are not entirely independent. For example, in an IP-over-ATM

service using PVCs, it is impractical to set QOS parameters for an unknown workload tra-

versing a fixed set of virtual circuits. Moreover, the sheer number of virtual circuits

required for a complete PVC mesh likely forces a multiplexing policy of one virtual circuit

per router pair. Thus, the only PVC policy we consider is a QOS-oblivious (noqos), vir-

tual circuit per router (router) pair design.

In a similar vein, when performing router multiplexing, it is impossible to assign a

meaningful QOS to each virtual circuit, because the nature of the aggregate traffic between

the routers is unknown. Therefore, all of the policies that use a multiplexing policy of one

virtual circuit per router pair do not use any of ATM’s QOS features.

We point out certain interesting points in this policy space:

Name Policy

pvc Permanent Virtual Circuits. These connections are never torn down.

svc Switched Virtual Circuits with 10-second static timeouts. Virtual circuits idle for
longer than this amount of time are torn down.

svccache Switched Virtual Circuits with 10-second static timeouts. Virtual circuits idle for
longer than this amount of time are cached for future re-use. After 300 seconds (5
minutes) of idle time, they are torn down.

Table 2-3. Virtual Circuit Management Policies.

20

• The noqos-*-pvc-router policy (labeled “1” in Figure 2-7) represents the sim-

plest possible IP-over-ATM design. It was used by XUNET II, a wide-area ATM test-

bed, in its default configuration [Fraser92]. Other ATM network testbeds (such as

BAGNET [Johnston95]) have used this policy, in situations when a lack of interopera-

bility makes providing switched virtual circuits infeasible.

• The noqos-*-svc-router policy (denoted by “2” in Figure 2-7) is used by sev-

eral commercial ATM LANs employing SVCs, including the FORE Systems ATM

LAN described in [Biagioni93].

• We have implemented enhancements to the XUNET II IP service to cover various

SVC policies (labeled “2”, “3”, and “4”). More details on this implementation can be

found in [Mah94a].

Figure 2-7. IP-over-ATM Policy Space. Circles represent specific design points in this
space. The arrows parallel to the QOS axis reflect the fact that this study examined many

more QOS policies than could easily be depicted in this diagram.

pvc svc svccache

sp-telnet

noqos

router

app

QOS
Axis

Multiplexing
Axis

Virtual Circuit Management Axis

1 2

3

4
conv

sp-ftp

21

There are, of course, other considerations which must be addressed in the design of an IP-

over-ATM system. One example is the relationship between IP and ATM routing

(addressed in various ways by the various proposals listed in Section 2.4). An investigation

of such issues, however, is outside the scope of this work.

22

3 Methodology

This chapter presents our methodology for evaluating the performance of different IP-

over-ATM policies. We used simulations to look at the impact of using various IP-over-

ATM policies in a heterogeneous IP internetwork with a wide-area ATM backbone. Spe-

cifically, we focused on the operation and performance of common Internet applications

running in this environment. By exploring the space of possible IP-over-ATM policies, we

were able to analyze the effects of different quality-of-service, multiplexing, and virtual

circuit management policies separately, as well as their interactions. Our simulations uti-

lized a new network simulation tool, the Internet Simulated ATM Networking Environ-

ment (INSANE).

3.1 Introduction

Fairly early in our experiment planning, we realized that we would need to rely on network

simulation for our evaluation. One reason was that there were almost no IP-over-ATM net-

works available for experimentation that fit our needs. We initially planned to use XUNET

II [Fraser92], but it was decommissioned during the course of our investigations. Even if

a suitable network were available, implementation artifacts and background network traf-

fic would have introduced uncontrollable factors whose effects might be difficult to isolate.

We briefly considered the use of analytic techniques. However, we felt that the workings

and dynamics of a large IP internetwork would be too difficult to analyze in a tractable

fashion.

A simulation, by contrast, was ideal for several reasons. First, it allowed us to capture the

behavior of hardware, protocols, and applications very closely. We were able to run our

experiments in a controlled setting, as we had complete control over the environment.

23

Finally, because (in many cases) a simulation is a single program on a single computer,

testing and analysis was much easier compared to working in a distributed network.

We chose to simulate a wide-area IP internetwork, in which an IP-over-ATM subnet is

used as a backbone. Other networking technologies are used at local sites. We felt that this

topology was consistent with our assumption that ATM will be used primarily for wide-

area, long-haul networks.

Upon this network, we imposed a workload that approximated traffic generated by contem-

porary Internet applications. Individually, we simulated instances of common applications

(such as Web browsers and mail servers) using empirical-based models that mimicked the

traffic patterns produced by real programs. Our complete workload was generated by

instantiating a number of these applications on hosts throughout the network. The specific

applications we examined in this study are listed in Table 3-1.

A critical choice in any network evaluation is the set of performance metrics. In our case,

we chose to look at application-layer performance. We assumed that changes to the IP-

over-ATM backbone would manifest themselves in end-to-end application measures, such

as file transfer completion times and packet loss rates. We felt that examining these metrics

would be important because they reflected effects visible to end users, unlike more abstract

measures such as average queue lengths.

We ran our workload and performed our measurements over a number of configurations,

covering a large number of points in the IP-over-ATM policy space discussed in Chapter 2.

We were able to investigate the effects of individual types of policies (for example, varying

Application Description Traffic Type

telnet Remote login Interactive

FTP File transfers Bulk transfers

HTTP World Wide Web Bulk transfers, somewhat interactive

audio Digital audio Continuous media (constant bitrate)

video Digital video Continuous media (variable bitrate)

SMTP Electronic mail Bulk transfers (background load only)

NNTP Network news Bulk transfers (background load only)

Table 3-1. Internet Applications.

24

multiplexing policies) by isolating their effects on the various application performance

metrics. For example, to see the effects of different multiplexing policies, we would com-

pare the performance of setups differing only in their multiplexing policies.

As a mechanism to perform our experiments, we designed and built the Internet Simulated

ATM Network Environment (INSANE). It contains models of many entities encountered

in the environment discussed above, simulating functionality from ATM cell transport to

TCP dynamics and application-layer workloads. It is well-adapted to investigating perfor-

mance in large networks.

In Section 3.2, we show the network environment we used for our evaluation. We describe

the workload we imposed on our network in Section 3.3. Section 3.4 discusses our evalu-

ation criteria and Section 3.5 discusses the actual experiments in some detail. In

Section 3.6, we present some details on INSANE, the network simulator we constructed

for this study. Finally, in Section 3.7, we present a few notes on our experiences with run-

ning and using the INSANE simulator.

3.2 Network Topology

The topology of our simulated network is loosely based on that of XUNET II, a wide-area

ATM network testbed largely sponsored by AT&T Bell Laboratories [Fraser92].

XUNET II connected a number of universities and research laboratories in the continental

United States from 1990–1996. At its peak, its backbone consisted of DS3 (45 Mbps) and

622 Mbps links between four universities and four government and industrial research lab-

oratories. Routers at each of the sites forwarded IP packets between the ATM backbone

and local subnets. XUNET II’s physical topology is shown in Figure 3-1.

Our simulated ATM backbone connected six local area networks, representing six of the

eight XUNET II sites. The main difference between our backbone and that of XUNET II

was that we constructed the former to have exactly one bottleneck link. Figure 3-2 shows

the configuration of the ATM backbone network used for our experiments.

Each of the six campus sites consisted of two servers and two hundred workstations con-

nected to an idealized shared-media 100 Mbps LAN. The servers represented FTP and

25

WWW servers seen on the Internet today. The workstations were assumed to be desktop

machines, each primarily used by a single person. The servers and workstations could com-

municate directly using the LAN for local communication, or to machines at other sites

through a router, also attached to the LAN. Figure 3-3 shows the configuration of a typical

site.

The simulated wide-area ATM links each had a bandwidth of 1.5 Mbps, the same line rate

provided by T1 circuits. The delays along these links were representative of cross-country

links; the one-way delay between the switches on the long-distance bottleneck link was 30

ms while the one-way latencies between all other pairs of adjacent switches were each 5

ms. Although higher-speed links are in common use today, we feel that our results would

likely scale up to faster link speeds and larger amounts of aggregate traffic.

University of California at Berkeley
Lawrence Berkeley Laboratory

Lawrence Livermore National Laboratory
Sandia National Laboratories, Livermore

University of Wisconsin at Madison

University of Illinois at Urbana-Champaign

AT&T Bell Laboratories, Murray Hill

Rutgers University, New Brunswick

Figure 3-1. XUNET II Backbone Topology.

26

Backbone.Oak.sw

Backbone.Nwk.sw

1

2

3

4

4

1

2

3

ATM End Host Address or Switch Port Number
INSANE Object Name

Sandia.router0

UIUC.router0

Rutgers.router0

ATT.router0

Wisc.router0

Berkeley.router0

1

3

4

5

6

8

128.32.131

198.51.254

192.20.225

146.246.250

128.74.240

128.6.37

1.5 Mbps ATM

100 Mbps Shared Media

ATM Switch

IP Host/Router

Figure 3-2. Logical Topology of Simulated ATM Backbone Network.

UNIVERSITY OF CALIFORNIA

SANDIA NATIONAL LABORATORIES
LIVERMORE, CA

AT&T BELL LABORATORIES
MURRAY HILL, NJ

UNIVERSITY OF WISCONSIN
AT MADISON

AT BERKELEY
UNIVERSITY OF ILLINOIS AT

URBANA-CHAMPAIGN

RUTGERS UNIVERSITY
NEW BRUNSWICK, NJ

IP Address or Subnet Number

27

3.3 Workload

We designed the network workload to approximate the traffic produced by contemporary

(1996) Internet applications. To do this, we simulated the network activity of several

common Internet applications, and placed instances of these applications onto various

hosts in the network during the course of a simulation run. In this section, we describe the

128.32.131

Backbone.UCB.sw

Berkeley.router0

Berkeley.server0

Berkeley.server1

Berkeley.client0

Berkeley.client1

Berkeley.client2

Berkeley.client3

Berkeley.client4

Berkeley.client199

.1

.2

.3

.4

.5

.6

.7

.8

.203

Figure 3-3. Logical Topology of a Typical Local Site.

UNIVERSITY OF CALIFORNIA
AT BERKELEY

...
To ATM Backbone

ATM End Host Address or Switch Port Number
INSANE Object Name

1.5 Mbps ATM

100 Mbps Shared Media

ATM Switch

IP Host/Router

IP Address or Subnet Number

3

28

various simulated applications provided by INSANE, as well as the composite workload

created out of instances of the individual applications.1

3.3.1 Telnet

The telnet application provides a means for users to login to computers across an IP net-

work [Postel83]. Part of the traffic generated by this application consists of single bytes (a

user’s keystrokes) sent in one direction along a TCP connection. The remote computer

responds to these data with replies of various lengths (a keystroke echo generates only a

single byte in return, but the user typing the final key of a UNIX shell command may gen-

erate a “reply” consisting of many bytes of data).

The behavior of the simulated telnet application is controlled by the empirical probability

distributions of tcplib, a set of traffic models designed for use in network simulators

[Danzig91]. For the telnet application, these distributions specify the interarrival times of

keystrokes, the size of responses, and the total duration of conversations. Although another

remote login application (rlogin [Kantor91]) is also commonly used, the traffic gener-

ated by the two is similar enough that we felt that simulating only one was sufficient.

3.3.2 File Transfer Protocol

The File Transfer Protocol (FTP) provides a service for copying files between computers

[Postel85]. It has been one of the most common Internet tools for the distribution of data

and software. Each FTP session consists of multiple TCP connections: a control connec-

tion and one or more data connections. User authentication, requests for files, and other

commands (plus their responses) are sent via the control connection. Each file is sent via

its own TCP data connection.

The number and size of files to be transferred is determined via empirical distributions,

again derived from tcplib. We note that in our model, all file transfers are downloads

1. We recall that some of the applications use TCP to provide reliable delivery of data. In addition to guar-
anteeing delivery, TCP also attempts to minimize congestion in the Internet by regulating the amount of
data that each connection can send into the network. To simulate these effects on network traffic patterns,
we needed to implement the TCP congestion control, error recovery, and connection management algo-
rithms on each host.

29

(from server to client). We believe that this behavior is representative of most file transfers

done on the Internet.

3.3.3 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is used for communication between clients (also

popularly known as browsers) and servers on the World Wide Web [Berners-Lee96]. It is

a request-response protocol, in which a client opens a TCP connection to a server and

requests a file; the server then replies with the file, using the same TCP connection. The

Web uses a model in which each document (also referred to as a page), consists of one or

more files to be transferred, each using its own TCP connection. For example, a page might

consist of text, plus three images, in a total of four files to be transferred. Unlike FTP, there

is no control connection; each individual file transfer is self-contained.

As no model of HTTP network traffic was available at the time of this study, we con-

structed our own model consisting of empirical distributions based on traffic traces. This

approach is similar in spirit to that used by tcplib. Our model includes the sizes of client

requests and replies, as well as the number of files transferred per Web page, and the “think

time” between pages. More details about our model, and the process of data collection, can

be found in Appendix A.

3.3.4 Simple Mail Transfer Protocol

We simulated one source of “background” network traffic using an extremely course sim-

ulation of the Simple Mail Transfer Protocol (SMTP) [Postel82]. SMTP uses TCP to

handle delivery of electronic mail on the Internet. Each SMTP transfer consists of two

phases: a request-response phase consisting of machine identification and option setting,

followed by some (sometimes short) one-way bulk data transfers, each containing an email

message. Multiple email messages can be sent in each TCP connection.

In INSANE, we only simulate the actual transfer of the email messages (taken from the

appropriate tcplib distribution), but not any of the handshaking that occurs beforehand.

We felt that for our purposes, a more precise simulation was unneeded and would unnec-

essarily increase the complexity of the simulation.

30

3.3.5 The Network News Transfer Protocol

Another background traffic source is furnished by servers running the Network News

Transfer Protocol (NNTP) [Kantor86]. NNTP is a protocol that uses TCP to deliver news-

group articles between news servers at different sites (they are then stored for retrieval by

local news clients). News servers typically transfer articles at selected times (for example,

every fifteen minutes), with each server communicating with a fixed set of peers.

INSANE’s simulation of NNTP consists of news server processes periodically exchanging

batches of news articles. Both the number of articles per batch and the sizes of individual

articles are taken from tcplib distributions. We model only traffic between news serv-

ers, as we feel that client-to-server traffic will be strictly local and not require wide-area

access.

3.3.6 Audio

A recent, growing trend is the live transmission of multimedia data across the Internet. To

examine this growing class of applications, we included two simulated multimedia appli-

cations in our traffic mix. The first sends digital audio data. One example of this type of

application is the Video Audio Tool (vat) [Jacobson96], which is used for multiparty

audio conferencing over the Internet MBONE [Macedonia94], a virtual network used to

provide IP multicast services to large portions of the Internet.2

Our simulated audio application sends voice-grade audio, using fixed-size packets at a con-

stant throughput of 64 Kbps. The sender is an on-off source, with the on- and off-times con-

trolled by two of tcplib’s empirical distributions used for characterizing packet voice

traffic.

3.3.7 Video

Another class of multimedia applications sends variable bitrate compressed video. An

example of this type of application is vic, a video conferencing tool used on the MBONE

[McCanne95, McCanne96b]. We used packet traces to derive a simple empirical model of

2. We note that although many current multimedia tools are designed for multicast (one-to-many) dissemi-
nation, our simulated applications and network currently support unicast (one-to-one) transmission only.

31

vic’s behavior, when used for teleseminar multicasts. vic operates in two states: a con-

ditional replenishment state to update pictures during periods of motion, and a background

update state to ensure that over a long time period, all senders eventually get a complete

frame image. Our model captures the transitions between these two states, as well as the

packet sizes and interarrivals within those two states. More details of our model can be

found in Appendix B.

3.3.8 Composite Workload

To provide a complete traffic model to our simulated network, we needed to inject a mix

of application traffic. This aspect of the workload can be characterized by a set of arrival

processes of new applications starting up on various hosts throughout the network. It is

impossible to give a single characterization for all Internet sites—[Cáceres91] showed that

Internet traffic varies widely among several sites studied and [Paxson94b] documents the

change and growth of Internet traffic over time at a single site. Our workload presents what

we feel is a “reasonable” workload for an Internet site, based on existing traffic studies

about the contributions of various Internet applications to wide-area network traffic.

Table 3-2 summarizes the arrival processes used to regulate the creation of instances of

applications at each of the network sites in our simulation scenario.

For our TCP-based applications, we first created application server processes on various

end hosts, which existed for the duration of the simulation. We then used various arrival

processes to spawn new application client programs on random hosts. These client pro-

cesses exchanged data with the designated server processes and terminated upon comple-

Initiated By Connection To
Type of Startup
Arrival Process

Mean Conversation
Interarrival Time,
Per Site (seconds)

telnet workstations workstations Poisson 10

FTP workstations servers Poisson 15

HTTP workstations servers Poisson 5

SMTP servers servers Poisson 4

NTTP servers servers Uniform 225

Audio workstations workstations Poisson 600

Video workstations workstations Poisson 600

Table 3-2. Application Workload for a Single Site.

32

tion, with a single exception: Our HTTP model does not contain any notion of a process

ending time; it does, however, model interarrival times between user requests for Web

pages. We therefore used Poisson processes to place new HTTP clients on each of the

client machines at random until every client machine contained a single Web browser, at

which point the Poisson processes terminated.

In the case of our UDP-based multimedia applications, we created both the sender and the

receiver of data at the same time. Both the sender and receiver processes terminated at the

end of the conversation.

3.4 Evaluating IP over ATM Policies

We conducted our evaluation of different IP-over-ATM policies with respect to the appli-

cation-layer performance of common Internet programs, examining metrics such as file

transfer time and packet loss rate. Although this approach made consideration of lower-

layer details (such as queue lengths and per-cell delays) difficult, there were two important

advantages to this methodology. First, the results directly showed the effects that would be

visible to applications and users. Second, addressing the requirements and behaviors of

specific Internet applications allowed us to see effects peculiar to those applications, which

a more abstract model might not permit.

As the applications we measured all have different requirements, we used different perfor-

mance metrics for each of them. This section discusses the various measures we used, as

summarized in Table 3-3.

For telnet, the main performance metric of interest to the user is the response time taken to

receive a reply to a keystroke press. Delays of more than a few tenths of a second will be

noticeably annoying. However, delays of less than about one tenth of a second are probably

not perceptible. Another metric of interest to telnet users is the time required to establish

the TCP connection used by a session. This time measures the delay between initiation of

the telnet session to the time the user can actually begin typing keystrokes to the remote

machine. Generally, longer delays are permissible for the connect time (compared to the

round trip time), as connection setup is performed only once per session.

33

In FTP file transfer sessions, the user is generally interested in retrieving a batch of files in

succession from an FTP server. An appropriate performance metric is therefore the total

amount of time taken to transfer all the files in an FTP session. To gain some further

insights, we also examine the time taken to transfer individual files.

In the case of HTTP, the user is usually retrieving documents one by one, most likely read-

ing each document before requesting the next. Thus, one suitable metric is the time taken

to request and retrieve a Web page. Since Web documents can consist of multiple files, this

response time includes the time needed to request and receive each of the component files.

As with FTP, we also measured the time required to transfer each individual file.

We assume that Internet audio and video applications are flexible enough to adapt to

changing end-to-end delays by buffering of data at the receiver. Given this premise, our

primary evaluation criteria is the loss rate. The higher the loss rate, the less intelligible will

be the audio and video stream at the receiver (we recall that these applications generally

run over UDP, which does not provide reliable data transport).

For audio applications, we also measure and evaluate the end-to-end delays. In interactive

voice communication, the round-trip delay between two communicating people can be a

Application Metric Statistic

telnet Connection time Median

90th percentile

Response time Median

90th percentile

FTP File transfer time Median

90th percentile

Session transfer time Median

90th percentile

HTTP File transfer time Median

90th percentile

Page transfer time Median

90th percentile

audio Loss rate Overall average

Overdue rate Overall average

video Loss rate Overall average

Table 3-3. Application-Specific Performance Metrics.

34

determining factor on performance. Studies have shown that the round-trip time cannot

exceed 250–300 ms, or the two parties will have difficulty interacting. This round-trip limit

leads to a one-way deadline of 125–150 ms; we refer to these packets as overdue. We mea-

sured the fraction of audio packets meeting or missing a 150 ms deadline. Because Internet

video data is typically transmitted at a low frame rate (5–15 frames per second), lip-syn-

chronization with the audio data is fairly useless [Keshav94]. Because of this fact, end-to-

end latencies are not as critical as for audio data, so we did not evaluate the delays suffered

by the video application.

The sole purpose of including the NNTP and SMTP applications was to provide back-

ground network load. Thus, we did not measure the network performance received and

experienced by these applications.

In addition to application-specific performance measurements, we occasionally examined

other metrics, when appropriate. For example, in our evaluation of virtual circuit caching

(Section 6.6), measuring the cache hit rate gave a measure of the effectiveness of reusing

idle ATM connections.

We note that some of the quantities we measured are partially dependent on factors exter-

nal to the network. For example, file transfer times were a function of both network per-

formance and file size. While sizes of files requested in our experiments were generated

randomly (and thus beyond the control of the network), they were drawn from identical

distributions, across all experiments. Given this latter fact, we feel that comparisons based

on these metrics were feasible.

3.5 Experimental Procedure

Our evaluation required two steps. First, we gathered a large amount of data by exploring

the space of possible IP-over-ATM policies. We then analyzed our data by performing

comparisons between results in such a way as to isolate the effects of the alternatives for

each of the three design issues.

Section 3.5.1 provides a few details on the running of our experiments. In Section 3.5.2,

we describe our analysis and discuss some of the statistics involved.

35

3.5.1 Gathering Data

Our experiments covered a wide range of IP-over-ATM policies, intended to explore the

policy space discussed in Chapter 2. We used policies formed from the components listed

in Figure 3-4, in all meaningful combinations (for example, QOS-aware policies could not

be used with router multiplexing because that policy did not allow packet classification

with a fine enough granularity). The useful combinations of quality-of-service, multiplex-

ing, and virtual circuit management policies resulted in a total of 103 different network

configurations.

We ran each of the network configurations at least three times (in some cases more) with

different initial random number generator seeds, in order to gain some statistical confi-

dence in our results. There were a total of 336 simulation runs. Each ran for 4000 seconds

of simulated time, to reduce the effects of startup transients. In all cases, we used the net-

work configuration of Section 3.2 and the network workload described in Section 3.3.

3.5.2 Analysis of Data

In our analysis, we compared the performance of the Internet applications in our traffic mix

when different IP-over-ATM policies were in use. In general, we did pairwise comparisons

between policies as we varied single components (for example, comparing two setups with

different multiplexing policies, but keeping the QOS and virtual circuit management poli-

cies fixed). In other words, our comparisons took place only along the design axes of

Figure 2-6. This approach permitted us to isolate the effects of different types of policies,

while (through complete coverage of the design space) we were also able to see various

interactions.

Design Axis Policies

Quality of Service noqos, sp, wc, nwc

telnet, ftp, http, audio, video, isp, av, qos1

Multiplexing conv, app, router

Virtual Circuit Management pvc, svc, svccache

Table 3-4. Components of IP-over-ATM Policies.

36

The comparisons we made between quality-of-service policies form the basis for

Chapter 4. Those involving multiplexing policies are presented in Chapter 5. Chapter 6

discusses results based on comparisons of virtual circuit management policies.

We note that many of our measurements resulted in sample distributions. For example, we

obtained the time taken to transfer each Web page requested during the course of an exper-

iment. To avoid the problem of comparing empirical probability distributions based on

thousands of sample points, we chose to compare the median and 90th percentiles of the

metrics in question. The performance metrics for which this procedure was applicable are

indicated by the rightmost column of Table 3-3.

As described earlier, our evaluation involved a number of comparisons between configu-

rations. For example, we compared the median time required to retrieve a Web page with

two different QOS policies, on the basis of three repetitions of each configuration. In such

comparisons, it is important to have some idea of the degree of confidence in a comparison,

in addition to the result itself. This is expressed in the concept of statistical significance,

which measures the probability that an apparent difference between systems is actually

meaningful and not due to random sampling errors.

Many researchers use the popular t Test for comparing unpaired samples for repeated

experiments. This statistical test is so named because it uses Student’s t distribution to

compute a confidence interval for the difference between the means of two sets of mea-

surements, which is then used to compare the two corresponding systems. Thus, one can

say that with 90% confidence (for example), one system is “better” than another, as mea-

sured by some metric. The procedure for computing a t Test is straightforward and com-

putationally inexpensive. However, the t Test is only applicable in cases where the

quantities being measured follow a normal probability distribution.3

We had no reason to believe the assumption of normality for any of the performance met-

rics of interest to us, and in any case we were not able to make enough measurements to

3. [Jain91], a popular performance analysis textbook, discusses the Test, but unfortunately makes no
mention of the requirement that data samples follow a normal distribution.

t

37

determine the exact distributions (recall that many measurements were run only three

times). It is important to note that we do know a great deal about the distribution of the

samples themselves (for example, the distribution of Web page retrieval times within a

single simulation run). However, we know little about the distributions of various statistics

(for instance the median or 90th percentiles) of these performance metrics across repeated

simulations.

In our evaluation, we drew on methods from nonparametric statistics, which make few

assumptions about the distributions of the sample data. In particular, we relied heavily on

a statistical test known as the Mann-Whitney U Test, as explained, for example, in

[Gibbons85]. This test uses the sorted ranks of the data values from both set of measure-

ments to determine the significance of differences between two alternatives. Intuitively, if

all the samples from one set of measurements fall below all those from the other set, we

can express a fairly high degree of confidence that this is due to actual differences between

the two respective systems. Conversely, if the sorted samples are interleaved, it is likely

that the two systems do not differ significantly.

We used the Mann-Whitney U Test as a basis for computing a confidence interval for the

mean difference between two datasets. If the confidence interval encloses zero, then the

two datasets are not statistically different at the specified confidence level. Otherwise, the

arithmetic sign of the endpoints of the confidence interval give the relation between the

two datasets. In most cases, we performed our comparisons using 90% confidence inter-

vals; this should be assumed in our presentation unless we state otherwise.

3.6 An Internet Simulated ATM Networking Environment

The vehicle for our experiments was a network simulator we have constructed, called the

Internet Simulated ATM Networking Environment (INSANE). INSANE simulates the

operation of a heterogeneous IP internetwork, which can include one or more ATM sub-

nets. Simulated application processes (representing common types of Internet applica-

tions) interact with each other over the network and log the performance they receive from

the network for off-line analysis. We model a number of different protocol layers, in both

the IP and ATM protocol stacks. The bulk of INSANE is implemented in C++

38

[Stroustrup91], with object classes representing various components of hosts, routers, and

switches.

The atomic and composite objects supplied by INSANE provide a simulated networking

environment that allows us to measure the network performance seen by various applica-

tions such as the World Wide Web or digital video transmission. The complete network

protocol stack supported by INSANE is shown in Figure 3-4.

In this section, we describe the different protocol layers implemented in INSANE, starting

from the datalink and physical layers (Section 3.6.1) and working up towards the applica-

tion layer (Section 3.6.4). In Section 3.6.5, we discuss some of the more interesting aspects

of INSANE’s implementation.

3.6.1 Datalink and Physical Layers

Two different subnet technologies are available. The Lan type simulates a simple, ideal-

ized, shared-media local area network, whose bandwidth and latency can be configured on

a per-subnet basis. A LanDeviceDriver class handles the software interface between

the Lan subnet and higher-layer protocols (in this case, IP).

Sig, SigHost

User Behavior

telnet FTP HTTP video audio

UdpTcp

Ip

Lan

ATM

Aal

CellGoBackN

LanDeviceDriver AtmDeviceDriver

User Layer

Application,
Presentation,

Session

Transport

Internetwork

Datalink,
Physical

igure 3-4. Protocol Stack of INSANE. Correspondence between the simulator’s network
layers and the OSI reference model are shown. Where applicable, the simulation object

class implementing a particular protocol entity is shown in fixed-point type.

NNTPSMTP

39

The second datalink layer is an ATM stack, which itself consists of several different com-

ponents. The ATM layer provides connection-oriented cell delivery service (unreliable,

but in-order). To provide for the transport of data units larger than single cells across the

ATM network, our ATM stack provides a simple AAL protocol, which performs fragmen-

tation and reassembly of packets in a manner similar to AAL5.

Signalling entities are necessary to establish virtual circuits through the ATM network.

INSANE’s ATM stack uses a protocol very similar to the Real-Time Channel Administra-

tion Protocol (RCAP) [Mah93], which provides signalling functions in the Tenet Real-

Time Protocol Suite [Banerjea96]. RCAP uses a single end-to-end round trip of signalling

messages to perform admission control and resource allocation for new channels. RCAP

relies on a hop-by-hop reliable message delivery service (the prototype RCAP implemen-

tation uses TCP for reliable message delivery). In INSANE, this functionality is provided

by a module that does a simple positive-acknowledgment retransmission protocol.

Finally, an AtmDeviceDriver class provides an interface between IP and the services

of the ATM network. In some sense this class is the most important of the entire simulation.

It implements all of the various IP-over-ATM policies for quality of service, multiplexing,

and virtual circuit management. The specific policies used can be selected at simulation

startup time.

The various components of the ATM stack are realized in switches and host adapters

implemented as composite objects in INSANE. The structure of the ATM switch is shown

in Figure 3-5. It is an output-queued switch, whose architecture is based loosely on the

XUNET II switch [Fraser92]. Cells enter the switch via one of the CellInputPort

objects, each of which represents an input port on the switch. The SwitchModule object

translates the VCIDs of cells passing through the switch and routes each cell to the appro-

priate output port (one of the CellQueueRcsp objects).

In INSANE’s switches (as with XUNET II), virtual circuit setup and teardown functions

are performed by a signalling process running on an outboard switch control computer;

these processes are simulated by SigRcsp objects. Signalling cells are sent using dedi-

cated connections established between adjacent switch controllers at network startup time;

40

the SwitchModule on each switch routes cells on these connections to the SigRcsp

module. A CellGoBackN object placed “in front” of each signalling process provides

reliable delivery. We note that in contrast to ATM Forum standard virtual circuits,

INSANE’s ATM connections are simplex. Thus, bidirectional communication requires a

pair of virtual circuits.

The structure of the ATM host adapter is very similar to that of the switch. The main dif-

ference is that one of the “switch ports” really consists of an Aal object and AtmDevice-

Driver object leading to the host’s IP stack. The signalling module is slightly different,

in order to account for the interactions between the ATM stack and the host.

INSANE’s ATM switches and host adapters implement a strategy known as Early Packet

Discard (EPD). This technique attempts to improve the performance of TCP connections

traversing ATM networks, in which the unit of congestion loss (a single ATM cell) is

smaller than the unit of retransmission (a TCP segment, which may span many ATM cells).

Simulation experiments have demonstrated that TCP throughput can be severely degraded

due to link bandwidth being wasted carrying useless data for packets that have already lost

cells due to congestion. EPD addresses this problem by dropping cells for packets known

SigRcsp
(Signalling)

CellGoBackN
(Reliability)

SwitchModule
(VCID Translation)

CellQueueRcsp
(Output Port)

CellInputPort
(Input Processing)

CellInputPort
(Input Processing)

CellInputPort
(Input Processing)

CellQueueRcsp
(Output Port)

CellQueueRcsp
(Output Port)

Figure 3-5. ATM Switch Composite Object. Primitive objects are labeled with using
fixed-point type. The flow of cells is indicated by arrows. The scheduling
discipline used in this output-queued switch (RCSP, as shown) can be changed by

replacing the output ports and signalling module.

41

to be incomplete due to cell losses [Romanow94]. As some ATM switches currently in pro-

duction offer this feature, we implemented EPD in the cell queues for all ATM switches

and host adapters.

3.6.2 Internetwork Layer

The Internet Protocol is simulated by the Ip module (one per host). The primary function

of the Ip modules is the routing of IP datagrams between hosts. Each has a static routing

table that can be loaded at configuration time. Although we have not yet implemented any

facilities for supporting dynamic routing, such a feature would not be difficult to add.

3.6.3 Transport Layers

We have implemented two transport-layer protocols in INSANE. The more interesting is

the Transmission Control Protocol (TCP), implemented by the Tcp object class. We based

this protocol implementation very heavily on the TCP Reno implementation in BSD

4.4Lite UNIX (a detailed description of the BSD 4.4Lite kernel can be found in

[McKusick96], with a walkthrough of its networking implementation in [Wright95]). For

simplicity, we omitted several features such as urgent data, although we implemented

TCP’s connection management, slow start, congestion avoidance, and retransmission algo-

rithms.

We also implemented the BSD-style fast and slow timers, to simulate the operation of

BSD-like operating systems and to account for the effect of timer granularity on TCP per-

formance. These timers fire every 200ms and 500 ms respectively, with each Tcp object’s

timers having a different random phase offset, in order to avoid synchronization effects.

The other transport protocol is the User Datagram Protocol (UDP), implemented by the

Udp object class. UDP provides a lossy datagram service used by INSANE’s multimedia

applications. Although it is frequently used for certain local-area services such as Sun’s

Network Filesystem (NFS) [Sandberg85], these services and their accompanying protocols

are not part of our study.

42

3.6.4 Application Layers

We have implemented various simulated applications to use the TCP and UDP services of

INSANE. The applications, already described in Section 3.3, cover a range from remote

logins to the World Wide Web to digital multimedia.

3.6.5 Simulator Implementation

INSANE is an object-oriented, discrete-event simulator. In this type of simulation, various

objects, such as queues or network protocol modules, communicate by posting events to

each other. Events signify occurrences such as a packet arrival or a timeout. Each event is

a message consisting of four components: A time that the event should be delivered, the

intended recipient of the event, the type of the event, and a data field whose interpretation

is dependent on the event type. Each object in the simulation has an event handler that does

all the required processing for each different type of event. A event scheduler is responsible

for delivering events to the various objects in the correct chronological order.

This type of simulator organization lends itself to a model of objects as finite state

machines, where they react to posted events by updating their internal state and potentially

causing actions to happen (such posting events to other objects or writing information to

the simulator’s log files). In fact, all of INSANE’s protocol objects are implemented in this

fashion. While this model appears to be a good match for certain abstract objects such as

queues, and even some protocol processing entities, it is not a very natural way of express-

ing the behavior of application programs. In particular, we found that expressing procedure

calls or blocking system calls was difficult in this model.

INSANE’s discrete-event scheduler, simulation infrastructure, and a large number of built-

in objects (also referred to as atomic objects or primitive objects) are all implemented in

C++ [Stroustrup91]. These built-in objects include various types of queues, network pro-

tocol modules, and user applications.

Every atomic object exports a set of commands for the Tcl scripting language

[Ousterhout94], which allows objects to be easily created and manipulated via Tcl pro-

grams. We found the use of Tcl as a configuration language has proven quite useful; net-

work configurations are simply Tcl scripts, which can utilize all of Tcl’s control constructs

43

to build complex objects (also referred to as composite objects). Although Tcl is an inter-

preted language, we see no performance degradation from using it because Tcl scripts are

primarily used only to configure a simulation scenario. The actual computations are per-

formed almost entirely by the compiled C++ code. This approach has been taken by several

other simulation packages, two fairly recent examples are Ptolemy [Ptolemy96] and ns

[McCanne96a].

We feel that our simulator is fairly efficient, and is capable of simulating large networks

within a reasonable amount of time. When simulating the network in Section 3.2 (approx-

imately 1200 hosts) with the workload described in Section 3.3, INSANE running on an

otherwise-idle Sun Ultra 1 (one 167 MHz UltraSPARC processor, 64 MB RAM, Solaris

2.5) could complete a 4000-second simulation run in approximately four hours of wall-

clock time. This results in a slowdown of approximately 3.6:1 (the ratio of real time

elapsed to simulation time elapsed). During our development, we noted slowdowns of 11:1

on Sparcstation 10 workstations (one 40 MHz SuperSPARC processor, 64 MB RAM,

Solaris 2.4) and 8:1 on a Pentium PC (one 100 MHz P5 processor, 48 MB RAM, FreeBSD

2.1.0-RELEASE).

3.7 Experience with INSANE

The long running time of our simulations imposed some heavy demands on our computing

environment. We used a distributed computing cluster belonging to the Network of Work-

stations research group at the University of California at Berkeley. At the time, the NOW

cluster consisted of roughly one hundred Sun Ultra 1 workstations and forty Sparcstation

10s and 20s. By using idle workstations, we were able to run a large number of simulations

in parallel. To avoid interference with other users of the cluster, we typically ran batches

of ten to fifteen runs overnight or on weekends. Each simulation run required about four to

five hours of wall-clock time on the Ultra 1s, or about twelve hours of wall-clock time on

the Sparcstation 10s. Simulations such as INSANE can be run in parallel reasonably well,

since each run was a single, sequential process which required no communication with pro-

cesses running on any other machines.

44

The only I/O performed by each job consisted of writing to an output file. We compressed

the output files before saving to disk in order to reduce the disk bandwidth requirements.

Each run produced approximately ten megabytes of compressed output. We then ran a

series of postprocessing scripts over the output files to summarize and analyze the network

performance.

45

4 ATM Quality of Service and IP
Conversations

In this chapter, we examine the effects of different ATM quality of service policies on the

end-to-end performance of Internet applications. Although the Internet currently has no

means for explicitly exploiting ATM QOS features, we found that these features can be

used to affect end-to-end application performance. We investigated the effects of using

four different scheduling disciplines across a simulated ATM backbone, along with vari-

ous policies for assigning service parameters to Internet applications. We show that static

priority scheduling can be used to indicate preference for certain applications, although

low-priority traffic can suffer from starvation caused by high-priority bulk transfers. Con-

tinuous media applications can also benefit from the use of guaranteed-performance ATM

connections.

4.1 Introduction

One of the features of Asynchronous Transfer Mode technology is its ability to provide

performance guarantees. By contrast, the Internet Protocol, as presently deployed, has no

support for end-to-end quality of service. We believe, however, that Internet applications

can still derive some benefits from using ATM quality of service features to get preferen-

tial treatment across an ATM subnet.

The correct quality of service to be used for a conversation will depend on the application.

For example, interactive applications such as telnet and rlogin require low delays to be use-

ful. Bulk transfers (such as those performed by FTP) work best over high throughput con-

nections. In many cases the QOS will be implied, based on pre-existing knowledge about

applications. Currently, Internet applications are not required to specify their QOS require-

46

ments (indeed, there is no currently widely-accepted standard for doing so, though RSVP

[Zhang93b] is a popular contender). There are, however, several methods for a network to

infer the QOS requirements of a stream of IP datagrams:

• By examining TCP or UDP port numbers (or other higher-layer information), a host or

router at the edge of the ATM network may be able to determine the application type of

an IP conversation, and hence the appropriate quality of service. This approach relies

on many applications in the Internet using well-known ports and the network usage of

common applications being well-known.

• By monitoring the throughput of a given conversation over time, the network may be

able to compute an appropriate set of requirements for an ATM virtual circuit (for

example peak and average throughput requirements). Such an adaptive scheme is, of

course, only useful when an IP conversation lasts long enough to permit reliable mea-

surements.

• The application may be able to send some sort of QOS request indicating its require-

ments. Such a message could, for example, be contained within an IP option of a data

packet or be sent using a signalling protocol such as RSVP [Zhang93b] or the Real-

Time Channel Administration Protocol (RCAP) [Mah93].

• A default set of parameters (perhaps “best effort with no resource reservation”) is nec-

essary for the case in which no QOS can be determined for a given conversation.

We recognize that these approaches to QOS, if implemented only the basis of single sub-

nets, will not provide end-to-end performance guarantees to IP conversations (at least not

in the general case of a heterogeneous internetwork). However, it can potentially improve

network performance for applications traversing an ATM backbone network, where

resources are presumably more scarce than in a local area environment.

In Section 4.2, we discuss some prior and related work in the area of providing quality-of-

service guarantees. We discuss some of the mechanisms used in this work in Section 4.3.

Three sections of this chapter describe our simulation results with various scheduling dis-

ciplines and policies for employing them; a summary of these results can be found in

47

Table 4-1. Section 4.4 shows the results of using static priority scheduling to give prefer-

ence to selected Internet applications. In Section 4.5, we show similar results for the work-

conserving variant of the Rate Controlled Static Priority (RCSP) scheduler. Section 4.6

discusses results with a rate-jitter-controlled variant of RCSP. Finally, we present our con-

clusions in Section 4.7.

4.2 Prior Work

Although no prior work has been published on this use of QOS in ATM subnets supporting

IP, the problem of providing QOS in an internetworking environment such as the Internet

has received considerable attention. For the most part, existing IP networks do not provide

any quality of service support. All packets and conversations are treated identically. How-

ever, some work has been done with the Type of Service (TOS) bits in the IP header

[Almquist92] or IP’s precedence field [Bohn94] to express the priority assigned to a data-

gram. IPv6 contains support for a Flow ID, which can be used to identify datagrams as

belonging to a particular flow and thus eligible to receive a particular treatment by routers

[Deering96].

Various solutions exist to address quality of service considerations in non-IP internet-

works. For example, networks based on algorithms and protocols such as the Tenet Real-

Time Protocol Suite offer mathematically provable end-to-end real-time performance guar-

antees [Banerjea96]. They require the applications to specify their requirements to the net-

work in advance. Admission control tests are used to limit the number and type of real-time

connections allowed into the network, in order to provide deterministic or statistical per-

formance guarantees. These guarantees hold even under “worst-case” conditions.

Static priority scheduling can be used to improve the performance of interactive and continuous-
media applications. However, starvation of low-priority traffic is a danger when attempting to
use this mechanism to help FTP bulk transfers.

Attempting to use rate control to police bulk transfers yields inconclusive results. In some cases,
resource allocation close to the ATM network’s capacity can cause admission control tests to
fail, causing bulk transfers to be routed over unpoliced, best-effort connections.

Audio and video applications can benefit from the use of guaranteed-performance connections
using rate-controlled static priority queueing.

The smoothing provided by rate jitter control reduces the occurrence of buffer overflows and
TCP retransmissions, improving long bulk transfer performance.

Table 4-1. Summary of Quality of Service Results.

48

The Integrated Services model being designed for the Internet includes several service

classes to support differential treatment of IP packets [Clark92, Braden94]. One is a guar-

anteed service, providing mathematically provable bounds on delay and bandwidth

[Shenker96]. Another service being actively considered is a controlled-load service, which

attempts to provide requesting applications the loss rates and delays they would receive

from an “unloaded” (uncongested) network [Wroclawski96]. The resource reservation

protocol RSVP is designed to provide signalling functions for these services in the global

Internet [Zhang93b].

4.3 Quality of Service Mechanisms

Several mechanisms are required to support giving different qualities of service to packets

in an IP-over-ATM setting. At the lowest level, the ATM network needs to support differ-

ent qualities of service for cells. We describe the schemes we used in this work in

Section 4.3.1.

At a higher layer, IP routers with interfaces onto the ATM subnet can then use these ATM

mechanisms according to some QOS policy. To do this, the routers must contain mecha-

nisms for classifying IP packets and forwarding them onto different virtual circuits.

Section 4.3.2 describes these methods.

4.3.1 ATM Network Support for Quality of Service

We configured the RCSP schedulers in our simulated switches to support a range of delay

bounds. We recall that each of the schedulers controlled access onto a T-1 speed link,

(1,536,000 bits per second). At this bit rate, a 53-byte ATM cell (including payload and

header, but no other overheads) has a transmission time of 276 microseconds. We ignored

delays caused by T-1 framing.

For our simulations, we defined delay bounds supported by each scheduler between 16 and

128 cell transmission times. Due to scheduling granularity, the regulators in the RCSP

scheduler imposed an additional worst-case delay of 8 cell times. These settings yielded

the local delay bounds for each priority level, as shown in Table 4-2. Best-effort traffic was

given the lowest scheduling priority, and was unregulated. Signalling messages were sent

49

via PVCs whose cells were prioritized higher than best-effort traffic, but lower than all of

the guaranteed priority classes.

The ATM-attached routers requested virtual circuits by specifying the endpoint of the con-

nection and the various QOS parameters, as shown in Table 4-3. We note that these param-

eters were a subset of those used in [Banerjea96]; the remaining parameters are set by

implicitly assuming the use of deterministic delay bounds (), fixed-size ATM

cells (), and no packet drops due to buffer overflows ().

We note that the RCSP scheduler supports a discrete number of local delay bounds. If a

router requested a per-switch delay bound falling between the delay bound values sup-

ported by a queue, our signalling software treated the establishment as if it had requested

the next lower delay bound supported by the queue.

Note that the delay bounds specified were local delay bounds (in other words, per switch),

not end-to-end delay bounds as would normally be expected [Ferrari90]. We designed the

network in this way because the decomposition of end-to-end delay bounds into a set of

local delay bounds is a problem outside the scope of this work. In particular, some policy

must generate, from an end-to-end delay bound, a feasible set of local delay bounds to be

requested at each queue. While this computation is simple when given the state of resource

utilization at every switch in the network, such information (in perfect form) is unlikely to

be available in real networks. Thus, we deferred consideration of this particular issue.

In our different experiments, we actually used several different variants of the RCSP

queue, each with different “strengths” of QOS support, as summarized in Table 4-4. The

Level Cell Times
RCSP Delay
Bound (ms)

Switch Delay
Bound (ms)

0 16 4.4 6.6

1 32 8.8 11.0

2 64 17.6 19.9

3 128 35.3 37.5

Signalling

Best-Effort

Table 4-2. Scheduling Priority Levels and Local Delay Bounds.

Zmin 0=

Smax 48 bytes= Wmin 0=

50

first, giving the weakest QOS assurances, was a pure static priority scheduler. It uses only

the priority queueing mechanisms, without rate control or admission control. Although it

provides no performance guarantees, it is a simple approach to providing different network

services to various conversations.

The second variant was a work-conserving RCSP queue. This type of scheduler imple-

ments priority queueing and rate control. In order to provide performance guarantees, it

relies on admission control at channel setup time.

The last variant was non-work-conserving RCSP. In addition to the features of work-con-

serving RCSP, it performs a form of distributed rate jitter control, in which cells are delib-

erately delayed in the network in such a way as to partially reconstruct the originally arrival

pattern of cells into the network. Although this tactic reduces the variation in end-to-end

delays along guaranteed connections, it has the disadvantage of increasing the average end-

to-end delay.1

Parameter Metric

destination Destination endpoint of the virtual circuit. Each virtual circuit is sim-
plex (unidirectional) and unicast (one receiver). The ATM protocol
stack in INSANE uses small integers as network addresses.

Minimum inter-cell spacing. Determines the peak data rate along a
virtual circuit.

Average inter-cell spacing. Determines the average data rate along a
virtual circuit.

Averaging interval, over which the average rate specified by
must hold.

Local delay bound at each switch.

Table 4-3. Parameters Given to Signalling System to Establish a Virtual Circuit.

Type Symbol
Priority
Queueing

Rate
Control

Admission
Control

Jitter
Control

Best-effort noqos No No No No

Static Priority sp Yes No No No

Work-Conserving
RCSP

wc Yes Yes Yes No

Non-Work-Conserving
RCSP (Rate Jitter Con-
trol)

nwc Yes Yes Yes Yes

Table 4-4. Rate-Controlled Static Priority Variants. These different schedulers can all
be expressed as similar “versions” of the original RCSP scheduler.

Xmin

Xave

I Xave

d

51

4.3.2 Packet Classification

In order to provide differing qualities of service, ATM-attached routers need to be able to

classify incoming packets into different IP conversations. This classification must be done

on a packet-by-packet basis, since IP is a connectionless network layer protocol. Given the

current architecture of IP, it makes the most sense to do this in a thin layer beneath IP and

above the ATM adaptation layer; in a BSD-based UNIX implementation, the code would

reside as a part of the device driver for the ATM network.

We identify different IP conversations by a conversation key, which consists of the source

and destination IP address, IP type-of-service field, the transport layer protocol, and (where

applicable) the source and destination port numbers at the transport layer. The applicable

header fields of a TCP/IP packet are shown in Figure 4-1. Analogous fields are used for

UDP or other protocols layered on top of IP. We note that this approach violates the tradi-

tional layering paradigm common in networks; it is necessary because IP does not support

any notion of connections. Our concept of a conversation is similar to that of an IPv6 flow.

In fact, if we were to extend this work to IPv6-over-ATM, we would be able to use its Flow

ID field to perform some of the packet classification.

1. The RCSP algorithms support another form of jitter control known as delay jitter control. It perfectly
reconstructs the original arrival pattern of cells into the ATM network, at every switch. However, it requires
timestamping of every ATM cell. We deemed this functionality infeasible to implement in high-speed ATM
networks, and so did not investigate this alternative.

Urgent Pointer

Destination TCP Port

Version Hdr Len Preced TOS Total Length

ID Flags Fragment Offset

TTL Protocol IP Header Checksum

Source IP Address

Destination IP Address

Source TCP Port

TCP Sequence Number

TCP Acknowledgment Number

FlagsRsrvdHdr Len

TCP Checksum

Window Size

IP Header

TCP Header

igure 4-1. TCP/IP Header Fields Used for Conversation Keys. White (non-shaded) fields
are those used to identify individual IP conversations.

52

We distinguish different applications in one of two ways. All of our TCP applications have

the property that they are assigned “well-known ports” (well-known transport-layer

addresses) [Reynolds94]. Assigning fixed port numbers to certain applications enables

client processes to easily locate server processes (for example, a telnet client application

knows that it can locate telnet servers on remote hosts on TCP port 23). An ATM-attached

router can check the source and destination port numbers of a TCP packet; if it sees a well-

known port number in the TCP source port field, the packet is likely transmitted by a server

process to a client process. Conversely, it a well-known port number appears in the TCP

destination port field, the packet is likely transmitted by a client process to a server pro-

cess.2

For our UDP applications, determining the application is slightly more problematic. For

the audio and video applications we simulated, there are no well-defined port numbers;

although we can use the UDP port numbers for the purpose of determining a conversation,

we cannot, in general, use these fields to determine the application.3 We instead simulated

the use of higher-layer protocol fields which specify the media type of each packet (e.g.

audio or video). An example of such a protocol is the Real-Time Transport Protocol (RTP)

[Schulzrinne96].

In Table 4-5, we list the different conversation types and corresponding QOS parameters

supported by our simulated routers. In some cases (specifically the telnet, video, and audio

applications) the parameters can be derived based on known traffic patterns. Bulk transfer

applications such as FTP and HTTP are more difficult to characterize, since these transfers

can “expand” to consume all the resources on a link. For these cases, we settled for a set

of “reasonable” values.

2. Among the applications we studied, there exists one notable exception to this heuristic. World Wide Web
URLs can specify a port number for HTTP requests; thus it is possible for Web servers to listen to port num-
bers other than the default, which is 80. However, in a recent survey of HTML documents collected by the
Inktomi “Web crawler”, approximately 94% of the documents surveyed were accessed by the standard
HTTP port [Woodruff96].

3. Beginning with version 3.5, mrouted, the MBONE routing daemon, now assumes a mapping of priori-
ties (and suggested applications) onto UDP port numbers. For example, “highest priority, i.e. audio” data is
assumed to map to UDP ports 16384–32767. The Internet session directory tool sdr conforms to this map-
ping, as of version 2.1a1 [Handley96].

53

Some traffic types have associated with them two different sets of QOS parameters, corre-

sponding to the two directions of a duplex connection. These directions are labelled “up”

and “down”. “Up” refers to data sent from a client to a server (for example, packets from

a Web browser to a Web server). We apply the label “down” to traffic from a server to a

client (such as the packets containing telnet keystroke echoes). We note that even a unidi-

rectional data transfer (such as an FTP download) requires bidirectional connectivity, due

to the need to send TCP acknowledgments. Because our simulated ATM connections were

simplex only, TCP traffic required two virtual circuits, one each for the “up” and “down”

traffic.

We also recall that FTP uses two types of TCP connections, one for control messages and

another for actual data transfer. As they use different TCP ports, it is easy to distinguish

the two and assign them different QOS parameters, if necessary.

Conversation
Type Direction (Peak Rate) (Average Rate)

telnet up 10 ms 20 ms
19.2 Kbps

50 ms
7.68 Kbps

500 ms

down 10 ms 10 ms
38.4 Kbps

20 ms
19.2 Kbps

1000 ms

FTP (control) up 20 ms 100 ms
3.84 Kbps

500 ms
0.77 Kbps

5000 ms

down 20 ms 100 ms
3.84Kbps

500 ms
0.77 Kbps

5000 ms

FTP (data) up 80 ms 100 ms
3.84 Kbps

100 ms
3.84 Kbps

2000 ms

down 80 ms 20 ms
19.2 Kbps

20 ms
19.2 Kbps

2000 ms

HTTP up 40 ms 50 ms
7.68 Kbps

100 ms
3.84 Kbps

10,000 ms

down 40 ms 4 ms
96.0 Kbps

8 ms
48.0 Kbps

1000 ms

audio any 20 ms 4 ms
96.0 Kbps

5 ms
76.8 Kbps

100 ms

video any 50 ms 2.6 ms
148 Kbps

3.5 ms
110 Kbps

2000 ms

Table 4-5. QOS Parameters By Conversation Type. The background applications
SMTP and NNTP are not listed because they were always sent best-effort.

d

Xmin Xave

I

54

4.4 Static Priority Schemes

Our experiments with static priority schedulers within the ATM network showed that,

although prioritizing the traffic produced by individual applications enhances their perfor-

mance, this effect can come at the cost of the performance of other applications. Some low-

volume applications, such as telnet, had no noticeable effect on other traffic. However,

assigning higher priorities to bulk transfer applications such as FTP has a severe, detrimen-

tal impact on the performance of interactive traffic.

To investigate the effects of a simple static priority scheduler, we experimented with sev-

eral QOS policies, whose parameters are shown in Table 4-6. Some gave a higher priority

to traffic generated by individual applications. These policies allowed us to see the “best-

case” improvement which individual applications could see, as well as the consequences

for other applications. We designated these QOS policies sp-telnet, sp-ftp, sp-

http, sp-audio, and sp-video, so named after the application selected to receive

preferential treatment.

Other policies assigned increased priorities to combinations of applications, in order to

explore interactions between applications. The first, named sp-isp, forwards both telnet

and HTTP traffic at higher priority. (It received this appellation because it gives preferen-

tial treatment to interactive applications of interest to present-day Internet Service Provid-

ers.) A second policy, designated sp-av, sent all audio and video data at high priority.

Finally, the sp-qos1 policy transmitted data for all supported applications (telnet, FTP,

HTTP, audio, and video) at their assigned higher priority levels, with only the background

traffic (SMTP and NNTP) sent best-effort.

Within the experiments using each QOS policy, we also varied the multiplexing and virtual

circuit policies (two alternatives each, for a total of four different setups, designated app-

svc, app-svccache, conv-svc, and conv-svccache). We also performed sev-

eral repetitions (usually three, but sometimes more) of each experiment, with varying

random number seeds.

Our results show comparisons of the different QOS policies against results obtained with

the noqos policy, which sent all traffic best-effort, at the default priority level.

55

4.4.1 Single-Application Static Priority Policies

Our results with single-application static priority policies show that they can yield signifi-

cant performance improvements for bulk transfers (such as FTP and HTTP) and continu-

ous media applications. The interactive remote login application (telnet) saw smaller gains.

However, the lack of admission control or policing caused problems for telnet, audio, and

video applications when FTP bulk transfers were given priority.

The sp-telnet QOS policy caused only small decreases in both the telnet connection

setup time and keystroke response time. We saw improvements in the median connect time

in the two svccache configurations (20 ms faster connections, for a 10% speedup). The

90th percentile only showed statistically significant improvements in the app-svc con-

figuration (the average speedup was 100 ms, or 29%). Figure 4-2 illustrates these effects.

We also measured the median and 90th percentile of telnet response times; that is, the time

needed to get a response to user keystroke packets. We saw statistically significant

improvements in the response time, averaging about 20% in the median and almost 40%

at the 90th percentile. The absolute magnitude of these differences, however, was quite

QOS Policy

Conversation Types

telnet FTP (control) FTP (data) HTTP Audio Video

up down up down up down up down

sp-noqos

sp-telnet 1 1

sp-ftp 2 2 3 3

sp-http 3 3

sp-audio 2

sp-video 3

sp-isp 1 1 3 3

sp-av 2 3

sp-qos1 1 1 2 2 3 3 3 3 2 3

Table 4-6. Scheduling Priority Levels for Static Priority Policies. Each row represents a
single QOS policy for the static priority scheduler, while each column stands for the
data generated by a given application. Numbers signify the priority level given to an

application’s data by a specific QOS policy (lower numbers indicate priorities). Blank
entries signify that an application receives best-effort, lowest-priority service. SMTP

and NNTP conversations, not shown here, are always sent best-effort.

56

small (about 16 ms and 70 ms respectively), probably not perceptible to humans. These

effects are shown in Figure 4-3.

When we turned our attention to the sp-ftp policy, we saw that it significantly reduced

the amount of time required to complete single FTP file transfers, as shown in Figure 4-4.

0

0.1

0.2

0.3

0.4

0.5

app
svc

app
svccache

conv
svc

conv
svccache

T
el

ne
t C

on
ne

ct
 T

im
e

(s
ec

on
ds

)

noqos, 90th Percentile
noqos, Median

sp-telnet, 90th Percentile
sp-telnet, Median

Figure 4-2. Effects of sp-telnet Policy on Telnet Connect Times. Stacked bars denote
the 90th percentile and median connect times. The effect of the new QOS policy can be
seen by comparing adjacent bars within each pair. Pairs of bars correspond to different

multiplexing and virtual circuit management policies, as discussed in later chapters.

0

0.05

0.1

0.15

0.2

0.25

0.3

app
svc

app
svccache

conv
svc

conv
svccache

T
el

ne
t R

es
po

ns
e

T
im

e
(s

ec
on

ds
)

noqos, 90th Percentile
noqos, Median

sp-telnet, 90th Percentile
sp-telnet, Median

Figure 4-3. Effects of sp-telnet Policy on Telnet Round-Trip Times.

57

The use of sp-ftp had only a minuscule effect on the median file transfer time. However,

it succeeded in decreasing the 90th percentile of file transfer times by about half. We

attribute the difference to fixed overheads (such as propagation delays) playing a more sig-

nificant role in small file transfers than in large ones.

The effects on the completion time of an entire FTP session were more apparent. This

metric measures the time to establish a control connection from client to server, transfer

some number of files, and close the control connection. We saw improvements of about

30% in the median session time and about 50% in the 90th percentile of session times, as

shown in Figure 4-5. The absolute values of these improvements, tens of seconds, should

be easily perceived by users.

The drawbacks of a static priority scheme were borne out, however, in the fact that the sp-

ftp policy delivered significantly worse performance to other applications. For example,

telnet delays were much increased; the 90th percentile of telnet round-trip times increased

by 32–78%. The median Web page retrieval time increased by 1–29%, as shown in

Figure 4-6. This difference was only statistically significant for the conv-svc configu-

ration at 80% confidence, but the app-svc, conv-svc, and conv-svccache setups

showed longer retrieval times with 60% confidence. Perhaps more importantly, the audio

Figure 4-4. Effects of sp-ftp Policy on FTP File Transfer Time.

0

1

2

3

4

5

app
svc

app
svccache

conv
svc

conv
svccache

FT
P

Fi
le

 T
ra

ns
fe

r
T

im
e

(s
ec

on
ds

)

noqos, 90th Percentile
noqos, Median

sp-ftp, 90th Percentile
sp-ftp, Median

58

loss rate increased to 2.0–2.8% (an almost tenfold increase). We observed the video loss

rate to be in the range of 4–8%, almost three times what it was with the noqos policy.

The effect of the sp-http policy on Web traffic was similar to that of sp-ftp on FTP.

It had the general effect of reducing the time to transfer individual files by 12–20% at the

90th percentile and by 30–35% at the median. For the most part, however, the per-file gains

were reflected in improvements in the transfer time of complete Web pages. The median

0

5

10

15

20

25

30

35

40

app
svc

app
svccache

conv
svc

conv
svccache

FT
P

Se
ss

io
n

T
im

e
(s

ec
on

ds
)

noqos, 90th Percentile
noqos, Median

sp-ftp, 90th Percentile
sp-ftp, Median

Figure 4-5. Effects of sp-ftp policy on FTP Session Times.

0

1

2

3

4

5

6

7

8

app
svc

app
svccache

conv
svc

conv
svccache

H
T

T
P

Pa
ge

 R
et

ri
ev

al
 T

im
e

(s
ec

on
ds

)

noqos, 90th Percentile
noqos, Median

sp-ftp, 90th Percentile
sp-ftp, Median

Figure 4-6. Effects of sp-ftp Policy on HTTP Performance.

59

page transfer times were shortened by about 20%. The 90th percentile of transfer times

reflected 37–45% improvements. Interestingly, we could find no statistically significant

effects on other applications, even at the 80% confidence level, and examining the mean

differences provided no obvious trends. We believe that this result was a consequence of

the generally shorter length of HTTP files, compared to FTP files.

When we ran the sp-audio policy, it had the expected effect of reducing the loss rate of

audio data, at least in scenarios using per-application (app) multiplexing. The packet loss

rate, in the range of several packets per thousand in the case of best-effort data, was

reduced, in most cases, to slightly less than one packet per thousand. This was an improve-

ment of 44–82%, the effects of which are shown in Figure 4-7. The effects with per-con-

versation (conv) multiplexing were not statistically significant. However, we saw that the

fraction of overdue audio packets (taking longer than 150 ms to reach their destinations)

dropped from 5–7% to 2–3%, a reduction of 43–75%.

We expected, and saw, large reductions in the packet loss rate when sending video data at

a higher priority (the sp-video policy). The loss rate decreased from 1–2% to about

0.1% or less, a reduction in the loss rate of about 90–95%. This improvement was statisti-

cally significant for app-svc, app-svccache, and conv-svccache setups. In a

0

2

4

6

8

10

app
svc

app
svccache

conv
svc

conv
svccache

A
ud

io
 L

os
s/

O
ve

rd
ue

 R
at

e
(%

)

noqos Overdue
noqos Loss

sp-audio Overdue
sp-audio Loss

Figure 4-7. Effects of sp-audio Policy on Audio Loss Rate.

60

qualitative sense, the results were similar to those of the sp-audio policy on audio data,

but more pronounced.

4.4.2 Combination Static Priority Policies

To a certain extent, running combinations of applications at higher priority had effects sim-

ilar to those of individual applications. In some cases, however, an excess of high-priority

traffic caused a number of expected performance improvements to disappear. One likely

explanation is the starvation of the ATM signalling system, which we observed in the case

of the sp-qos1 policy.

As described earlier, the sp-isp policy assigns a higher-than-default priority to both

telnet and HTTP traffic. We noted a general improvement in the performance of both appli-

cations, only slightly less than those seen with the single-application policies sp-telnet

and sp-http, individually. For comparison, the 90th percentile of telnet response times

improved by 29–39% (with three of four configurations showing statistically significant

improvement), as compared to 36–46% with sp-telnet. The 90th percentile of Web

page transfer times improved by 35–44%, whereas with the sp-http policy it improved

by 37–46%. In general, sending these two applications’ data via high-priority connections

had no significant impact on the other measured applications.

In a similar fashion, audio and video applications saw improvements with the sp-av pol-

icy, similar to the individual sp-audio and sp-video policies. Both applications saw

sizeable reductions in their loss rates (and, in the case of the audio application, the overdue

rate). Most setups exhibited improvement with 90% confidence, and a few only with 80%

confidence. As with the sp-isp policy, applications using the default priority were only

slightly affected (or not at all) by the sp-av policy.

The sp-qos1 scheme exhibited an interesting combination of effects. Telnet connect

times rose significantly for svc setups, an average of two to four times longer at the 90th

percentile. To explain this, we note that telnet connect times consist of two components.

First is the time to establish an ATM virtual circuit across the backbone. Second is the time

taken to do a TCP connection establishment using that ATM connection. We infer that the

observed increase was due to drastically longer virtual circuit setup times, since the actual

61

TCP packets for telnet had the highest priority of any in the network. Our evidence indi-

cates that signalling traffic (given its own priority level just above the default, best-effort

priority) was partially starved by the large volume of higher-priority data traffic. This sit-

uation could be avoided by sending all signalling traffic at the highest priority level, or by

using guaranteed-performance virtual circuits for signalling traffic. We note that this effect

was somewhat mitigated by the use of virtual circuit caching, because telnet performance

became less dependent on the ability of the ATM signalling system to establish virtual cir-

cuits quickly.

Some other metrics also showed changes with the sp-qos1 scheme. The 90th percentile

of telnet round-trip times was reduced by an average of 50–90 ms. FTP and HTTP transfer

times showed little significant changes, except for 20–25% speedups in the conv-svc-

cache setup. The conv-svccache configuration also produced large, significant

reductions in the audio and video loss rates, as well as the audio overdue rate. At lower con-

fidence levels (80%) these improvements became significant for other configurations as

well.

4.5 Work-Conserving RCSP

In general, our continuous media (audio and video) applications benefited from the use of

work-conserving RCSP, in particular with respect to audio delays and video losses. Appli-

cations that performed bulk transfers (FTP and HTTP) experienced large degradations of

performance because the policing in the ATM network prevented them from opportunisti-

cally using all of the link bandwidth. These effects, observed when applications were

selected individually for guaranteed-performance connections, generally extended to mul-

tiple-application policies as well.

There are two primary differences between the work-conserving RCSP scheduler and the

static priority scheduler used in Section 4.4. First is the addition of rate control. The work-

conserving RCSP scheduler maintains the notion of an eligibility time for each cell.

Roughly speaking, cells that arrive too early, according to their connection’s traffic param-

eters, are marked “ineligible”. Ineligible cells receive the lowest-possible scheduling pri-

62

ority (even worse service than for best-effort traffic). The net effect is that any traffic sent

in excess of a connection’s traffic specification will receive much-degraded service.

The second difference is the addition of admission control tests, performed at connection

setup time. These admission tests allow the ATM network to support performance guaran-

tees; a connection request is denied if its performance guarantees cannot be met or if its

acceptance could permit another connection’s guarantees to be broken. It is therefore pos-

sible for a virtual circuit request to fail. We instructed our IP-over-ATM implementation

to react to the failure of a guaranteed-performance request by opening a best-effort connec-

tion instead.

As with the static priority scheduler, we performed tests both with individual application

policies (designated wc-telnet, wc-ftp, et al.) and with multiple application policies

(wc-isp, wc-av, and wc-qos1). The applications selected for special treatment by the

scheduler were the same as those for the static priority scheduler, but we set the per-appli-

cation traffic parameters using the values in Table 4-5. We present comparisons of these

policies with the default noqos policy.

4.5.1 Single-Application Work-Conserving RCSP Policies

We saw that interactive logins were almost unaffected by the use of work-conserving

RCSP scheduling. Applications that performed file transfer (FTP and HTTP) saw signifi-

cant increases in the time taken to complete their operations. Audio and video seemed to

benefit from the use of guaranteed connections.

When we sent telnet traffic using work-conserving RCSP (wc-telnet), we observed no

statistically significant effects on either the connect times or round-trip response times. We

recall that the sp-telnet policy caused slightly shorter times for both metrics. The dif-

ference between the wc-telnet and sp-telnet cases can most likely be explained by

the effects of policing in the work-conserving RCSP scheduler. We recall that it degrades

the priority of ineligible cells, which would have retained their higher priority with a static

priority scheduler.

63

When we used the wc-ftp policy, FTP file transfers suffered from significantly increased

completion times. At the 90th percentile, files took as much as thirteen times longer to

transfer than with the noqos policy. The effect at the median was somewhat less (a 15–

25% increase in file transfer times). We observed a similar effect on FTP session comple-

tion times. The median sessions took 5–7 times longer to complete, while at the 90th per-

centile, sessions took 11–14 times longer to transmit all their data. These results, shown in

Figure 4-8, were a consequence of the policing and rate limiting of the RCSP scheduler.

With no QOS controls in place, each FTP file transfer could potentially use all of the avail-

able bandwidth along its path (subject to TCP’s congestion and flow control algorithms).

However, the work-conserving RCSP scheduler only guaranteed the performance of data

sent within the confines of its traffic specification. Data sent in excess of the traffic speci-

fication could have been delayed considerably.

While detrimental to the performance of FTP, we expected that the policing provided by

the wc-ftp policy and the RCSP scheduler would be useful to other applications which

could benefit from the network bandwidth that would otherwise be used by FTP. This

effect would manifest itself, for example, in lower telnet response times and Web page

Figure 4-8. Effects of wc-ftp Policy on FTP File Transfer Times. Note that completion
times are shown on a logarithmic scale.

0.1

1

10

100

app
svc

app
svccache

conv
svc

conv
svccache

FT
P

Fi
le

 T
ra

ns
fe

r
T

im
e

(s
ec

on
ds

)

noqos, 90th Percentile
noqos, Median

sp-ftp, 90th Percentile
sp-ftp, Median

64

transfer times. We were, however, unable to find any statistically significant effects on

other applications.

In the same manner that the wc-ftp policy limited the performance of FTP, the wc-

http policy throttled the performance of HTTP. Compared to the noqos policy, the

median file transfer time was increased by 12%–55%, while the 90th-percentile time was

increased by 36%–434%. We observed similar effects in the HTTP page transfer times,

which increased by 27–212% in the median and 68%–1494% in the 90th percentile.

Somewhat surprisingly, the wc-audio policy had no statistically significant effects on

the loss rates. For packets actually delivered, however, the wc-audio policy decreased

the rate of overdue audio data by 30–64%, though these improvements were only statisti-

cally significant for the app-svc configuration. These effects are illustrated in Figure 4-

9.

When we used the wc-video QOS policy, we saw a reduction in the video loss rate, from

an original loss rate of 1–2% to well under 1%. The improvement in loss rate was 54–87%.

However, the variances we observed were so large that even at 60% confidence, only the

svc policies showed statistically significant improvements.

0

2

4

6

8

10

app
svc

app
svccache

conv
svc

conv
svccache

A
ud

io
 L

os
s/

O
ve

rd
ue

 R
at

e
(%

)

noqos Overdue
noqos Loss

wc-audio Overdue
wc-audio Loss

Figure 4-9. Effects of wc-audio Policy on Audio Overdue Rate and Loss Rate.

65

4.5.2 Combination Work-Conserving RCSP Policies

As we expected, the effects of the multiple-application QOS policies were very similar to

the superposition of the single-application wc policies.

When we ran our workload using the wc-isp policy, Web browsing (HTTP) was gener-

ally slower (the 90th percentile of Web page retrievals increased by 44–147%, a difference

of several seconds per page). Telnet performance improved slightly. With 90% confidence,

the 90th percent of round-trip times showed improvements for the app-svc case (only),

whereas all but the conv-svccache showed improvements with 60% confidence. The

delays were reduced by a few hundredths of a second (an 8–20% improvement).

Interestingly, the wc-av policy failed to produce any statistically significant effects on

audio or video loss or overdue rates. Given the magnitude of the effects of the wc-audio

and wc-video policies on the same applications, this is perhaps not surprising; however,

our initial intuition led us to expect some significant performance improvements.

The effects of the wc-qos1 policy were a combination of the individual application pol-

icies. Telnet traffic experienced some minor improvements in both connection setup time

and round-trip response time. At the 90th percentile, these speedups were on the order of

10–60 ms (5–15%) and 40–60 ms (13–25%), respectively. However, we only observed sta-

tistically significant differences for the app-svc configuration.

Bulk transfers under wc-qos1, throttled down by policing in the ATM network, saw

increased delays. The 90th percentile of FTP sessions took 21–53 seconds (71–171%)

longer. Similarly, the 90th percentile of Web page transfers increased by 0.7–3.4 seconds

(16–90%), although this degradation was only significant for scenarios with per-applica-

tion multiplexing.

4.6 Non-Work-Conserving RCSP

Applications using non-work-conserving RCSP exhibited effects similar to those of work-

conserving RCSP. Bulk transfer performance was improved over work-conserving RCSP

because the smoothing effects of the rate jitter control caused fewer cells to be dropped in

the ATM network. We found that the policing effect of RCSP virtual circuits could be ren-

66

dered less effective when there were enough guaranteed virtual circuits to cause admission

control tests to fail; this resulted in a number of bulk transfers being sent over unpoliced,

best-effort connections.

There is only one difference between the work-conserving and non-work-conserving vari-

ants of the RCSP scheduler. We recall that the work-conserving variant can forward cells

that have arrived too early or too quickly, albeit at a much lower scheduling priority. In the

non-work-conserving variant, these cells are buffered until they are once again compliant

with the traffic specification for their connection. This difference translates into increased

delays for sources that send data faster than their traffic specification.

4.6.1 Single-Application, Non-Work-Conserving RCSP Policies

For the most part, the use of non-work-conserving, jitter-controlled RCSP (nwc) had

effects similar to those with the use of work-conserving RCSP (wc). Although the per-

application policies succeeded in restricting the performance of bulk transfer applications,

we could find no statistically significant evidence that other applications were able to take

advantage of the resulting conservation of network resources. Interestingly, the perfor-

mance degradation with the nwc schedulers was not as severe as with the wc schedulers,

due to the former’s traffic shaping helping to control buffer overflows. The continuous

media applications were, in general, helped by having their data sent over guaranteed con-

nections, suffering from less dropped or overdue data.

When telnet traffic alone was sent using guaranteed connections (the nwc-telnet pol-

icy), connect times were, for the most part, only slightly changed.

The nwc-ftp policy had a somewhat counterintuitive effect on FTP traffic. As expected,

FTP file and session completion times were increased (the 90th percentile of file transfer

times increased by 680–742%, with FTP sessions taking 645–814% longer). However,

these effects were somewhat less than for the wc-ftp policy, as shown in Figure 4-10.

This result ran contrary to our expectations. We expected FTP performance with nwc-

ftp to be worse than with the work-conserving wc-ftp, due to the extra delays intro-

duced by jitter control. We investigated further and found that bulk transfers carried by

67

work-conserving connections suffered from more dropped packets, due to buffer over-

flows. These overflows appear to have been caused by bursts of cells. The resulting drops

caused TCP timeouts and retransmissions, and reduced the throughput sufficiently to offset

the effects of the lower delays. We did not observe these packet drops with the nwc sched-

uler; the jitter-controlled queues tended to smooth out large bursts at the entrance to the

ATM network, as well as in intermediate switches.

In the same way that the nwc-ftp policy slowed down FTP transfers, the nwc-http

policy caused Web browsing to take more time. The 90th percentile of Web page transfers

increased from 3.8–4.0 seconds to 5.8–11.4 seconds, an increase of 53.6%–185%. As with

the case of FTP described earlier in this section, the degradation of the nwc-http policy

on HTTP was not as great as that for wc-http. The latter, we recall, caused the 90th per-

centile of page transfer times to increase as much as fifteen times in one configuration.

The nwc-audio QOS policy only had minor effects on audio traffic. We observed aver-

age loss rates of 0.12%–0.22% (a reduction in the loss rate of 12%–52%). Only 1.7%–4.0%

of packets were overdue (a reduction in the overdue rate of 33%–53%). However, the only

1

10

100

1000

10000

app
svc

app
svccache

conv
svc

conv
svccache

FT
P

Se
ss

io
n

T
im

e
(s

ec
on

ds
)

noqos, 90th Percentile
noqos, Median

wc-ftp, 90th Percentile
wc-ftp, Median

nwc-ftp, 90th Percentile
nwc-ftp, Median

Figure 4-10. Effects of nwc-ftp Policy on FTP Session Times. Note that the use of a
on-work-conserving RCSP variant (rightmost bars in each set of three) actually results in

less performance degradation than work-conserving RCSP (center bars).

68

statistically significant difference in the overdue rate was in the app-svc setups. We saw

no significant changes in the loss rate. These effects are illustrated in Figure 4-11.

As we expected, the nwc-video policy lowered the loss rate of video data by providing

it with guaranteed performance. The loss rates dropped from 1.1%–2.6% (with the original

noqos policy) down to 0.39%–0.74%. This reduction corresponded to an improvement of

31–77% in the loss rate. As with our audio application, however, these effects were gener-

ally not statistically significant.

4.6.2 Combined, Non-Work-Conserving RCSP Policies

In general, we found that the multiple-application nwc policies had effects very much like

the combination of the individual application policies. An interesting side-effect we

observed was that, in some cases, large amounts of reserved resources caused a high failure

rate of guaranteed virtual circuit requests. These failures caused a significant number of

bulk transfers to be carried by best-effort virtual circuits, with no policing or jitter control,

which actually caused them to have lower transfer times.

The effects of the nwc-isp policy were similar to those of nwc-telnet and nwc-isp

combined. There were no significant effects on telnet latencies. HTTP applications saw

lower transfer times with the nwc-isp policy than with the nwc-http policy, with the

0

2

4

6

8

10

app
svc

app
svccache

conv
svc

conv
svccache

A
ud

io
 L

os
s

R
at

e
(%

)

noqos Overdue
noqos Loss

nwc-audio Overdue
nwc-audio Loss

Figure 4-11. Effects of nwc-audio Policy on Audio Loss Rate and Overdue Rate.

69

90th percentile of Web page transfers increasing to 5.2–7.4 seconds, or an increase of 37–

97%. At first this result seems somewhat counter-intuitive. However, we note that the

nwc-isp setups suffered from higher connection failure rates than the nwc-http sce-

narios (25–37% for nwc-isp to 7%-32% for nwc-http, depending on the multiplexing

and virtual circuit usage policies). These failures occurred because the network could not

provide the performance guarantees requested by new channels. The IP conversations cor-

responding to the failed VCs were then sent using best-effort connections. Since these con-

nections were unpoliced, the conversations using them actually tended to receive better

performance (leading to lower transfer times) than they would have if the original guaran-

teed virtual circuit setups were successful.

The nwc-av policy produced few statistically significant effects on the performance of

the audio or video sessions (the overdue rate for app-svc setups was reduced, with 90%

confidence). However, we observed that the audio loss rates for application multiplexing

dropped by 32–47%, and the overdue rate (for all configurations) was reduced by 18–55%.

This result was consistent with those produced by the nwc-audio, nwc-video, and

wc-av QOS policies, examined earlier.

Given the results of the use of single-application non-work-conserving QOS policies, the

effects of the nwc-qos1 policy were fairly predictable. Telnet experienced small, but not

significant, reductions in both connect time and round-trip time (3–14% at the 90th percen-

tile). FTP suffered from increased file and session times (an increase, for example, of 52–

109% for the 90th percentile of session completions). We note that this performance deg-

radation is minor compared to that produced by the nwc-ftp policy. We believe that, as

seen with HTTP in the wc-isp policy, increased amounts of guaranteed traffic caused

some FTP conversations to be carried by best-effort VCs due to admission control failures.

This in turn actually allowed FTP conversations to experience better performance than

they would have otherwise. Understandably the situation for HTTP traffic under the nwc-

qos1 policy was similar. We saw no significant effects on either the audio or video traffic.

70

4.7 Conclusions

In this chapter, we examined the use of several different scheduling disciplines to be used

in the queues of an ATM network. We looked at a best-effort policy (noqos), a static pri-

ority scheduler (sp), and two variants of rate-controlled static priority scheduling (wc and

nwc). We explored the use of these schedulers to express preference for different network

applications, and measured their effect on application performance.

We saw in these experiments that static priority queueing in the ATM backbone is a useful

mechanism for giving preferential treatment to selected applications. However, allowing

bulk transfer applications (such as FTP or HTTP) to use high-priority virtual circuits can

have an adverse affect on interactive and continuous media performance. We have also

seen situations in which a large amount of high-priority traffic can cause partial starvation

of service to the ATM network signalling system (especially without virtual circuit cach-

ing). As mentioned earlier, giving higher priority to signalling messages would alleviate

this particular problem.

We noted that policing of guaranteed ATM virtual circuits can be an effective mechanism

in controlling the performance of bulk transfer applications. However, our QOS policies

generated some counter-intuitive effects when the amount of guaranteed connections in the

ATM network was high. To wit, admission control failures resulted in IP conversations

being carried by (unpoliced) best effort connections, thus receiving better performance

than they would have if they had been carried by guaranteed ATM connections. We believe

that a partial solution to this problem can be implemented by using (if available) a priority

of service even lower than “best effort”, for conversations that fail admission control tests

in the ATM network.

We saw that bulk transfers can also benefit from the effects of jitter control, as this mech-

anism is an effective way of smoothing traffic, and helping to prevent buffer overflows in

ATM queues. These buffer overflows in turn lead to packet losses, which in turn cause

TCP timeouts and retransmissions. In isolated tests we performed, we saw that the packet

loss rate was so high that the TCP fast retransmission and recovery mechanisms were ren-

dered useless.

71

Based on our simulation results to date, we advocate using static priority schemes to

improve the performance of interactive (e.g. telnet) and multimedia (e.g. audio, video)

applications. Another additional, useful option is to use guaranteed-performance virtual

circuits for multimedia traffic. Both of these classes of QOS policies improve performance

for some selected applications without significantly impacting the behavior of others. The

actual choice of a QOS policy will likely depend on administrative concerns (for example,

determining which applications are “important” and should receive better service).

We close with some potential directions for future work. Some of the expected perfor-

mance effects failed to materialize, or did so without any meaningful level of statistical

confidence. Thus, we must make several observations about the effectiveness of our exper-

iments and methodology. Statistical significance was, in many cases, difficult to see, even

with confidence intervals as wide as 80%. The most effective remedy to this problem

would likely be to perform a larger number of experiments (difficult to do with our exper-

imental setup, because of the computational cost). We further believe that this would allow

some of the secondary effects to become more visible.

We also feel that some of the results were potentially colored by a light workload in the

network; the intuitive idea being that some of these QOS policies could not make perfor-

mance “better” because it was already “good”. A larger amount of background traffic, as

well as a higher arrival rate of supported user applications, would likely make the effects

of different QOS policies more apparent.

The classification method we used to determine QOS parameters is somewhat rigid, in that

it depends on using fixed quantities (port numbers) in transport-layer headers to select one

of a small, fixed set of QOS parameters. This scheme can encounter difficulties in the event

of misclassification (for example, if a video conversation were mistakenly classified as tel-

net, rate control in the ATM network would render the resulting stream unusable). It also

has no capability to handle new or unknown traffic types. These limitations could poten-

tially be solved by more flexible mechanisms, perhaps adapting to the traffic load of a con-

versation or using additional information provided by applications.

72

Finally, there is a large space to be explored in setting and tuning the QOS parameters to

be used for different Internet applications. In particular, it would be interesting to compare

parameter settings for bulk transfers, since they can, in an uncontrolled network, opportu-

nistically use as much network bandwidth as there is available.

73

5 IP over ATM Multiplexing Policies

This chapter examines different IP-over-ATM multiplexing policies and their effects on

the performance of common Internet applications. Because IP has no network-layer con-

nections, there is no single, obvious mapping from IP conversations to ATM virtual cir-

cuits. An ATM-attached router can use ATM virtual circuits to carry individual

conversations, or it can choose to aggregate the traffic from several IP conversations onto

one connection. Our simulation results show that multiplexing traffic in this way generally

improves the performance of file transfers (such as those required for small FTP or Web

files). In some cases, however, contention for buffer space or interactions with traffic

policing inside the ATM network can lead to performance degradations for longer file

transfers and continuous media applications.

5.1 Introduction

One of the most noticeable differences between IP and ATM is found in their respective

connection models. Because IP is connectionless, there is no one, unique mapping from IP

conversations onto ATM virtual circuits. One natural policy is for ATM-attached routers

to give each IP conversation its own connection across the ATM subnet. However, other

approaches might multiplex the data from several conversations (for example, several TCP

conversations) together onto the same ATM connection.

Since many conversations are short (such as those for a majority of Web pages), we expect

that aggregating them together will result in improved performance, due to the elimination

of virtual circuit setup overheads. The time to establish a connection may well be a large

fraction of the time needed to perform a short file transfer. Multiplexing a number of con-

74

versations together means that only a single virtual circuit needs to be established for the

group, thus amortizing (or masking) the delays caused by virtual circuit setup.

The use of guarantees has some additional implications. Intuitively, we expect that multi-

plexing a virtual circuit among many IP conversations should yield better utilization of that

virtual circuit’s allocated network resources due to statistical multiplexing “within” the

connection. However, this greater utilization comes at the expense of a decreased level of

protection between conversations sharing the same ATM virtual circuit.

To see how this aggregation of traffic might be useful, we can examine the characteristics

of audio-video conferences on the Internet, as described in [Mah94b] and [Keshav94], and

consider their transmission across an ATM subnet1. In these conferences, only one user

speaks at a time (except for occasional transients). A single ATM virtual circuit could be

multiplexed among all of the involved UDP/IP conversations and used to carry the audio

for the entire conference. That virtual circuit would only require enough resources to sup-

port one sender at a time. By contrast, most users send video data continuously throughout

a video conference; in order to protect the performance of each of the video streams, each

of the associated UDP/IP conversations would need to be assigned its own ATM virtual

circuit. The issue of resource sharing among related conversations is investigated in more

detail in [Gupta95a] and [Gupta95b].

In Section 5.2, we briefly discuss some prior evaluations of IP-over-ATM multiplexing

policies. Section 5.3 presents three multiplexing policies that we examined in this study.

We show our simulation results in two sections (highlights are listed in Table 5-1);

Section 5.4 addresses the merits of per-conversation and per-application multiplexing,

while Section 5.5 deals with per-router multiplexing as a separate case. Our conclusions

are presented in Section 5.6.

1. The conferences studied in [Mah94b] and [Keshav94] were sent using IP multicast. The support of IP
multicast over an ATM network introduces additional issues and is beyond the scope of this study. The dis-
cussion in this example merely addresses the question of how to forward the data from an audio/video con-
ference across an ATM subnet.

75

5.2 Prior Work

Several studies have already examined the issue of multiplexing datagrams for different IP

conversations over the same ATM virtual circuit. This research, however, was performed

in the context of best-effort virtual circuits. [Cáceres92] explored several different policies

for multiplexing TCP conversations in a wide-area ATM network carrying TCP/IP data

traffic. The study, as updated by [Cáceres93], suggested that the best multiplexing policy

is to establish a virtual circuit per conversation (combined with a round-robin service dis-

cipline in ATM switches); however, this policy was only considered for best-effort virtual

circuits.

Another study, based on Internet traffic measurements, found that many wide-area conver-

sations are short [Claffy94]. It recommended that such conversations be routed through a

mesh of Permanent Virtual Circuits (PVCs) in order to avoid the latency incurred by ATM

virtual circuit establishment. The study also claimed that on-demand Switched Virtual Cir-

cuits (SVCs) are only necessary for conversations with different priorities or QOS require-

ments, or for conversations whose high resource utilization would adversely impact the

performance of other traffic over the PVC mesh (such as high bitrate video).

Commercially available ATM LANs, such as the FORE Systems ATM LAN described in

[Biagioni93], typically multiplex all communication between a given pair of hosts on a

single virtual circuit (either a PVC or an SVC). This approach has the advantage of imple-

mentation simplicity, but has the disadvantage of giving identical treatment to all packets

between a given host pair.

Multiplexing several IP conversations over a single ATM virtual circuit generally shortens file
transfer times (especially short FTP or HTTP transfers).

When the ATM network does rate policing, unrelated IP conversations sharing an ATM virtual
circuit can interfere with each other, causing each other’s packets to be delayed. This effect can
result in somewhat longer file transfer times, especially for long file transfers.

Large amounts of multiplexing can cause large packet losses through buffer contention. This
effect manifests itself in higher loss rates for multimedia applications.

Table 5-1. Summary of Multiplexing Results.

76

5.3 Multiplexing Policies Examined

We examined three different IP-over-ATM multiplexing policies, which we describe here

in order of increasing levels of traffic aggregation. The first policy was per-conversation

multiplexing, abbreviated as conv. It assigns each IP conversation its own virtual circuit,

where a conversation is a TCP connection or a flow of UDP datagrams. This policy is illus-

trated in Figure 5-1.

Aggregating all of the traffic from a single application between a pair of end hosts yields

the per-application multiplexing policy, known as app. This policy, whose operation is

shown in Figure 5-2, was evaluated in [Cáceres92]. It has the effect of reducing the number

of virtual circuit setups required, in the case of repeated TCP connections or UDP flows

from one host to another. For example, this policy would forward all of the HTTP connec-

tions for a Web page onto a single virtual circuit, because they all share the same IP source

and destination, and carry traffic for the same application.2

With the app multiplexing policy, a router cannot know the exact number of IP conversa-

tions that will be sharing a virtual circuit (although we can describe them, as in the example

above). When the QOS policy uses guaranteed-performance virtual circuits, this intro-

duces the problem of not knowing, at connection setup time, the appropriate QOS to carry

this set of conversations. In our experiments, where it was applicable, we set the QOS for

2. An ATM-attached router can generally determine the application for which a packet carries data by
examining packet headers and looking for well-known TCP or UDP port numbers, as discussed in
Section 4.3.2.

LAN LAN
ATM Backbone

Figure 5-1. Per-Conversation Multiplexing. Each of the three IP conversations has its
packets transported over the ATM backbone by a separate ATM connection between the

routers R1 and R2.

H1

H2

R1 R2

H3

H4

77

a multiplexed virtual circuit to be the same as that for a non-multiplexed (per-conversation)

virtual circuit. This choice seemed appropriate as, due to the traffic patterns of the applica-

tions we studied, there was usually only one active conversation per virtual circuit. How-

ever, in Section 5.4.2, we note some interesting transient effects which arose from the

sharing of resources between IP conversations.

Finally, we consider a policy that aggregates all of the traffic between a given pair of rout-

ers onto a single virtual circuit. We refer to this policy as per-router-pair or per-router mul-

tiplexing, abbreviated as router. We shown an example in Figure 5-3. Per-router-pair

multiplexing is frequently used by commercial ATM LANs such as the FORE Systems

network described in [Biagioni93]. Several ATM network testbeds have used PVCs with

this policy, such as XUNET II [Fraser92] and BAGNET [Johnston95].

LAN LAN
ATM Backbone

igure 5-2. Per-Application Multiplexing. The top two conversations, both carrying HTTP
data from host H1 to host H3, share the same virtual circuit over the ATM subnet.

HTTP

HTTP

H1

R1

H2

R2

H3

H4

LAN LAN
ATM Backbone

Figure 5-3. Per-Router Pair Multiplexing. All of the data passing through router R1 and
router R2 (regardless of end hosts or traffic types) is forwarded over a single connection.

H1

R1

H2

R2

H3

H4

78

Similar to the app multiplexing policy, router lacks knowledge about the conversations

sharing each virtual circuit. Unlike the app policy, however, ATM connections supporting

the router policy are likely to carry a wide variety of different conversations, with many

active at any given time. Because our QOS parameters are designed to support specific

applications, we cannot assign any single QOS to this aggregation of traffic. Therefore, all

of our experiments with the router policy involved best-effort service only.

5.4 Per-Application and Per-Conversation Multiplexing

In this section we compare the application performance under two different multiplexing

policies: per-application multiplexing (app) and per-conversation multiplexing (conv).

We performed these comparisons using a variety of QOS policies and both the svc and

svccache virtual circuit policies. We found that app multiplexing was helpful for oper-

ations that depended heavily on the speed of connection setup, such as telnet connection

setups and short bulk transfers. However, interactions between different IP conversations

sharing an ATM connection, even though not active simultaneously, caused long file trans-

fers to take place more slowly in cases where the ATM network did traffic policing (the

nwc-* and wc-* QOS policies).

5.4.1 Telnet

In general, the performance of the telnet application was marginally improved by the use

of per-application multiplexing, over a per-conversation policy. The per-conversation

policy yielded longer connect times and round-trip times. For example, when we ran the

sp-ftp policy, the 90th percentiles of connect times were longer by 40–80 ms (14–18%)

and the 90th percentile of round-trip times was lengthened by 30–90 ms (12-30%). This

effect is shown in Figure 5-4. The average effect of the multiplexing policy was greater

with svc (as might be expected), but we only saw statistical significance in the svc-

cache case.

5.4.2 FTP

An interesting effect on FTP performance was that the performance of short files and long

files tended to favor different multiplexing policies. Short files were generally transferred

79

in less time with app multiplexing but, in rate-controlled scenarios, long files took less

time to send using conv multiplexing.

Short FTP file transfers seemed to complete in less time when the IP-over-ATM service

used app multiplexing. This effect was most pronounced in the sp-ftp setups. In this

scenario, we saw that switching from app to conv multiplexing resulted in an increase in

file transfer time of 60–90 ms (27–33%) at the median and 110–120 ms (8–10%) in the

90th percentile. Comparisons of the performance of both FTP file transfers and session

transfers are shown in Figure 5-5 and Figure 5-6, respectively. We note that this effect is

proportionately more pronounced at the median of file transfer times, probably because the

connection setup time accounts for a larger fraction of the total transfer time for smaller

files.

In setups where FTP data conversations were policed by the ATM schedulers, however,

long files and sessions tended to benefit more from the use of per-conversation multiplex-

ing (or showed little change between the two multiplexing policies). Both the wc-ftp and

nwc-ftp setups showed this effect. We illustrate the nwc-ftp scenarios in Figure 5-7

and Figure 5-8; in both plots, the difference illustrated by the svccache bars is statisti-

cally significant.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

svc svccache

T
im

e
(s

ec
on

ds
)

telnet connect 90th Percentile, app
telnet latency 90th Percentile, app

telnet connect 90th Percentile, conv
telnet latency 90th Percentile, conv

Figure 5-4. Performance Effects of app and conv Multiplexing on Telnet Performance,
sp-ftp QOS Policy.

80

Intuitively, longer files (and sessions) do not benefit as much from not having to wait for

connection setup, because this one-time cost becomes small compared to the time needed

to transfer a large file. However, the bursts generated by large files can interfere with other

files using the same virtual circuit. This phenomenon takes place in the queues inside the

ATM network. A burst of cells generated by a packet from one conversation can have the

0

0.5

1

1.5

2

svc svccache

FT
P

Fi
le

 T
ra

ns
fe

r
T

im
e

(s
ec

on
ds

)

90th Percentile, app
Median, app

90th Percentile, conv
Median, conv

Figure 5-5. Performance Effects of app and conv Multiplexing on FTP File Transfer
Time, sp-ftp Policy.

0

5

10

15

20

25

svc svccache

FT
P

Se
ss

io
n

T
im

e
(s

ec
on

ds
)

90th Percentile, app
Median, app

90th Percentile, conv
Median, conv

Figure 5-6. Performance Effects of app and conv Multiplexing on FTP Session Time,
sp-ftp Policy.

81

effect of delaying the cells for a following conversation on the same virtual circuit. This

effect occurs because the combined traffic load momentarily exceeds the traffic specifica-

tion for the ATM connection. The policing mechanisms in the ATM queues reshape the

traffic to correspond to the traffic specification, thus artificially delaying following cells

and increasing their end-to-end delay. In Figure 5-9, we illustrate this effect. We note that

0

5

10

15

20

25

30

35

40

svc svccache

FT
P

Fi
le

 T
ra

ns
fe

r
T

im
e

(s
ec

on
ds

)

90th Percentile, app
Median, app

90th Percentile, conv
Median, conv

Figure 5-7. Performance Effects of app and conv Multiplexing on FTP File Transfer
Times, nwc-ftp QOS Policy.

0

50

100

150

200

250

300

350

svc svccache

FT
P

Se
ss

io
n

T
im

e
(s

ec
on

ds
)

90th Percentile, app
Median, app

90th Percentile, conv
Median, conv

Figure 5-8. Performance Effects of app and conv Multiplexing on FTP Session Times,
nwc-ftp QOS Policy.

82

this occurrence does not require that the two (or more) conversations be active simulta-

neously. It can easily involve the last packet of one conversation and the first packet of the

following, non-overlapping conversation.

5.4.3 HTTP

Similar to the case with FTP, we observed two different effects with Web traffic. For the

QOS policies without rate control (i.e. all of the sp-* policies and the noqos policy), the

use of per-application multiplexing produced shorter item and page retrieval times than did

the use of per-conversation multiplexing. In Figure 5-10 and Figure 5-11, we compare the

transfer times with the two multiplexing policies; we found statistically significant differ-

ences for all metrics in the svc case and for the 90th percentile of item retrievals in the

svccache setup. As was the case with FTP, this effect is mostly likely due to the elimi-

nation of virtual circuit setups for repeated TCP connections from HTTP clients to their

servers.

Arrival Time

Departure Time

Arrival Time

Departure Time

Cell from last packet of conversation 1 Cell from first packet of conversation 2

Figure 5-9. Illustration of Interference Between Conversations Sharing an ATM Virtual
Circuit. This graph shows arrival and departure times from a rate-controlled ATM queue.

In the top picture, two conversations share a virtual circuit. A burst of cells causes the
eligibility time of subsequent cells, from an unrelated conversation, to be pushed into the

future; the cells will leave later than in the bottom picture, in which conversation 2 is
assigned its own virtual circuit, without interference from conversation 1.

83

Conversely, in the case of QOS policies that implemented rate control (those using the wc

and nwc schedulers), per-conversation multiplexing tended to reduce item and page trans-

fer times compared to per-application multiplexing. With the nwc-http QOS policy,

using per-conversation multiplexing resulted in significantly lower median and 90th per-

0

0.2

0.4

0.6

0.8

1

svc svccache

H
T

T
P

It
em

 R
et

ri
ev

al
 T

im
e

(s
ec

on
ds

)

90th Percentile, app
Median, app

90th Percentile, conv
Median, conv

Figure 5-10. Performance Effects of app and conv Multiplexing on HTTP Item
Retrieval Time, sp-http Policy.

0

0.5

1

1.5

2

2.5

3

svc svccache

H
T

T
P

Pa
ge

 R
et

ri
ev

al
 T

im
e

(s
ec

on
ds

)

90th Percentile, app
Median, app

90th Percentile, conv
Median, conv

igure 5-11. Performance Effects of app and conv Multiplexing on HTTP Item Retrieval
Time, sp-http Policy.

84

centile item and page transfer times. Figure 5-12 and Figure 5-13 show the comparison

between transfer times with the two multiplexing policies.

A likely explanation for these performance effects is that, as we discuss in Appendix A,

much Web activity involves repeated, short TCP connections. As we saw for FTP in

Section 5.4.2, repeated TCP connections sharing a virtual circuit interfere with each other

in ATM rate controllers. Bursts of cells sent from earlier item retrievals will, through the

0

1

2

3

4

5

svc svccache

H
T

T
P

It
em

 R
et

ri
ev

al
 T

im
e

(s
ec

on
ds

)

90th Percentile, app
Median, app

90th Percentile, conv
Median, conv

Figure 5-12. Performance Effects of app and conv Multiplexing on HTTP Item
Retrieval Time, nwc-http Policy.

0

2

4

6

8

10

12

14

svc svccache

H
T

T
P

Pa
ge

 R
et

ri
ev

al
 T

im
e

(s
ec

on
ds

)

90th Percentile, app
Median, app

90th Percentile, conv
Median, conv

Figure 5-13. Performance Effects of app and conv Multiplexing on HTTP Page
Retrieval Time, nwc-http Policy.

85

ATM policing, cause the data for subsequent retrievals to be delayed (either through

degrading the priority or explicit queueing of ineligible cells). This effect would likely be

exacerbated if the Web browsers modeled had used multiple, parallel TCP connections

(currently done in contemporary Web clients to improve interactive response time).

5.4.4 Audio

We saw few significant differences in either the audio loss rate or the audio overdue rate.

This result is likely due to the fact that, as with telnet, there is not enough locality of audio

conversations for the multiplexing policy to directly affect audio performance. In addition,

our workload has a fairly small number of audio conversations active at any one time.

5.4.5 Video

The performance experienced by our video application was similarly unchanged with

respect to the multiplexing policy we used. We feel that the reasons are the same as for the

audio application (no locality between endpoints, with few active conversations).

5.5 Per-Router Multiplexing

This section deals with per-router multiplexing, and compares it to setups using per-con-

versation multiplexing. The results we saw were similar to those in Section 5.4. Operations

whose completion time was strongly influenced by TCP connection setup were generally

sped up by the use of router multiplexing. However, long file transfers and sessions

were completed faster with conv multiplexing, most likely due to competition for buffers

along the path of shared virtual circuits. This assertion was borne out by the performance

of audio traffic, which also suffered from increased losses under the router policy.

There is one other notable difference between our tests in this section and those in

Section 5.4. Per-router multiplexing implies the use of best-effort virtual circuits only,

since all of the various QOS policies we examined are based on application-specific

parameters. Therefore this evaluation, which compares per-conversation to per-router mul-

tiplexing, was considerably simpler because it only needs to consider the sp-noqos QOS

policy.

86

The use of per-router multiplexing made it extremely unlikely that a new conversation

would require the establishment of an ATM connection. Due to the fact that each virtual

circuit carried an aggregate of many sources, it would almost never be idle long enough to

be timed out and torn down. Across all simulation runs with router multiplexing, there

were between 30 and 48 virtual circuit requests per run; we note that 30 virtual circuits is

the minimum necessary to support a fully-connected mesh between all routers.3 By com-

parison, the sp-noqos-conv-svc setups required between 162,000 and 174,000 vir-

tual circuit establishments over the course of a run.

5.5.1 Telnet

Intuitively, we would expect that the telnet clients would take less time to connect to their

servers. We did observe this effect, for both svc and svccache virtual circuit policies;

however we only saw a statistically significant difference for the svc case, which saw the

median and 90th percentile reduced by 62% and 57%, respectively. This effect is illus-

trated in Figure 5-14. The minor effects for the svccache setups can likely be attributed

to the effectiveness of the virtual circuit caches (we explore this subject in Section 6.6).

3. Our simulations had six sites, each with a single router; for each router to set up a (unidirectional) virtual
circuit to the other five required virtual circuits.n n 1–() 6 5() 30= =

Figure 5-14. Effect of router Multiplexing on Telnet Connect Times.

0

0.1

0.2

0.3

0.4

0.5

svc svccache

T
im

e
(s

ec
on

ds
)

90th Percentile, conv
Median, conv

90th Percentile, router
Median, router

87

Telnet round-trip times exhibited small, but not statistically significant, reductions of 0.5–

12% in the median and 14–15% at the 90th percentile.

5.5.2 FTP

We saw slightly smaller median file transfer times with router multiplexing (statistically

significant only for the svc setup), most likely due to the elimination of most virtual cir-

cuit establishments. We present this result in Figure 5-15.

By contrast, when we enabled virtual circuit caching, we noted longer transfer times for

the 90th percentile of individual files, as well as the median and 90th percentile of sessions,

when we used per-router multiplexing. Although not constituting a statistically significant

difference, this performance degradation was 10–22%. We believe that because so many

virtual circuit setups were absorbed by the virtual circuit cache (97% of potential virtual

circuit requests were cache hits, as we see in Section 6.6), the use of router multiplexing

gained little over conv multiplexing. However, long transfers felt the effects of competi-

tion for buffers along virtual circuits, which, with router multiplexing, are shared by

many different IP conversations.

We were able to partially validate the latter assertion by examining the drop rates of cells

in the ATM switch queues. When using conv multiplexing, we saw a cell drop rate (due

0

1

2

3

4

5

svc svccache

FT
P

Fi
le

 T
ra

ns
fe

r
T

im
e

(s
ec

on
ds

)

90th Percentile, conv
Median, router

90th Percentile, conv
Median, router

Figure 5-15. Performance Effects of router Multiplexing on FTP File Transfer Times.

88

to queue overflow) of 0.051%, averaged across all switch queues and multiple repetitions.

However, when we used router multiplexing, the drop rate rose to 0.064%. Although

this difference was not statistically significant, removing a single outlying run (with conv

multiplexing) caused our tests to show that the drop rates were higher with per-router mul-

tiplexing, with 90% confidence.

5.5.3 HTTP

The performance of Web clients was affected by router multiplexing in much the same way

as that of FTP clients. We saw that short sessions tended to complete faster with router

multiplexing due to the delay taken for conv multiplexing to set up virtual circuits. For

the svc case, the difference was approximately 140 ms at the median of both file and page

retrieval times.

These effects were not present when we enabled virtual circuit caching. As with FTP, long

Web files and pages took longer to transfer with router multiplexing, although these differ-

ences were not statistically significant. The 90th percentile of HTTP files took 300 ms

longer to transfer, a difference of 29%. The 90th percentile of Web pages took 500 ms

longer with router multiplexing, a degradation in performance of 13%.

0

10

20

30

40

50

svc svccache

FT
P

Se
ss

io
n

T
im

e
(s

ec
on

ds
)

90th Percentile, app
Median, app

90th Percentile, conv
Median, conv

Figure 5-16. Performance Effects of router Multiplexing on FTP Session Times.

89

5.5.4 Audio

The audio loss rate was dramatically higher with router multiplexing, in all cases. The

loss rate, which was less than 0.25% for conv multiplexing, jumped to over 1% with

router multiplexing, an increase of 310–880%. We attribute this effect to the loss of pro-

tection between different IP conversations sharing the same virtual circuit (they compete

for buffer space in the ATM switches). Figure 5-17 illustrates the differences in loss rates

(as well as packet overdue rates).

The overdue rate (for packets that actually made it all the way to their destinations) was

reduced somewhat, but not enough to make a statistically significant difference. We saw

reductions of about 20–32%.

5.5.5 Video

Video traffic was not significantly affected by the use of per-router multiplexing. We saw

a drop of 19% in the loss rate when svc virtual circuits were used. However, when we used

svccache virtual circuits, switching from conv to router multiplexing doubled the

loss rate (from 1.1% to 2.2%). The exact reasons for these results are not immediately

apparent.

0

1

2

3

4

5

6

7

8

svc svccache

A
ud

io
 L

os
s

R
at

e
(%

)

Audio Overdue, conv
Audio Loss, conv

Audio Overdue, router
Audio Loss, router

Figure 5-17. Effect of router Multiplexing on Audio Loss and Overdue Rates.

90

5.6 Conclusions

In these experiments, we compared the performance of three different multiplexing poli-

cies. The first (conv) assigns an ATM virtual circuit to every IP conversation. Another

uses an ATM virtual circuit for all traffic of a given application type between a pair of hosts

(app). The last uses virtual circuits like trunks, carrying all data between a pair of routers

(router).

We saw that increased levels of multiplexing (aggregating traffic on a per-application or

per-router basis) were beneficial to short TCP conversations. For small file transfers, the

initial setup (virtual circuit establishment and TCP connection setup) can account for a sig-

nificant amount of the time to complete the transfer. The elimination of some virtual circuit

setups was, therefore, helpful to the performance of these short operations.

However, the performance of long transfers under increased multiplexing suffered in two

circumstances. First, app multiplexing was detrimental to long transfers, when the ATM

schedulers performed rate control. The policing performed by rate controllers allowed

bursts of cells for one conversation to delay the eligibility of cells for following, unrelated

conversations sharing the same virtual circuit. The result was an erosion of most of the

gains made by elimination connection setups; in some cases, app multiplexing actually

resulted in longer transfer times.

Per-router multiplexing was similarly detrimental to long file transfers, as the high degree

of aggregation allowed conversations to compete with each other for buffer space in

switches. A particularly hard-hit application was the audio application, which saw a signif-

icantly increased loss rate.

These results suggest that a router should attempt to place long conversations on their own

virtual circuits, while allowing some degree of aggregation for shorter conversations. For

some traffic types, such as audio and video, it is generally safe to make the assumption that

the conversation will be long-lived, and thus place them on their own, dedicated virtual cir-

cuits.

91

In some other cases (in particular Web and FTP), it is not immediately clear how to accom-

plish this classification, given that current IP routers have no idea how long a given IP con-

versation will last. We feel, however, that it is desirable to perform per-application

multiplexing for these applications to get the performance gains for small files, on the

assumption that users are more likely to notice performance differences for small transfers.

There are some natural areas for future investigations. Two types of policies, not investi-

gated in this study, would afford some additional flexibility. We have seen that only some

traffic types would benefit from multiplexing; it would therefore be useful to investigate

some hybrid policies that, for example, perform conv multiplexing for audio and video

data, while doing app multiplexing for Web traffic.

Another type of policy worth examining would be one of a class of dynamic policies that

could move conversations between different virtual circuits. An instance of this policy

would, for example, be able to move an FTP file transfer from a shared to a dedicated vir-

tual connection after a certain number of bytes had been transferred.

92

6 Management of ATM Virtual
Circuits Used for IP

In this chapter, we investigate policies for the management of ATM virtual circuits used

for carrying IP datagrams. This issue arises because of a fundamental difference between

the data forwarding models of IP and ATM. Because IP is connectionless, end hosts have

no way to indicate the start and end of IP conversations and thus cause ATM connection

setups and teardowns. The policies described and evaluated here provide the means for

ATM-attached routers to infer an appropriate course of action. We show simulation results

demonstrating that, under many circumstances, caching of idle ATM connections can sig-

nificantly improve the performance of Internet applications as well as reduce the signaling

load in the ATM network.

6.1 Introduction

ATM-attached routers need to implement policies for the setup and teardown of virtual cir-

cuits because IP hosts have no means of performing (or requesting) these actions them-

selves. Such policies may be trivially simple, involving a mesh of ATM Permanent Virtual

Circuits (PVCs), or more complex, requiring Switched Virtual Circuits (SVCs) to be cre-

ated and destroyed according to the needs of IP conversations.

The use of performance-guaranteed virtual circuits raises additional problems. For

instance, the approach of creating a PVC mesh becomes less attractive in an ATM subnet

attempting to provide QOS support for IP traffic. A fixed set of PVCs cannot truly be

expected to provide the quality of service suitable for a possibly unknown traffic load.

Moreover, a fixed mesh of QOS-guaranteed virtual circuits ties up resources unnecessarily,

as the connections are not a priori known to be necessary.

93

An important tradeoff, made more so by the implications of resource reservations, con-

cerns the lifetime of ATM virtual circuits. To reduce the effects of virtual circuit setup time

on latency, it may be desirable to cache unused SVCs in the hope that they will be needed

again (possibly for a different IP conversation). However, to keep the real-time utilization

of the network high, it is important to free up the resources allocated to SVCs as soon as

they are no longer needed (releasing resources implies closing a connection, as, in our

model, a virtual circuit’s resources are associated with it throughout its lifetime). A virtual

circuit management policy must attempt to balance these two goals, possibly incorporating

the characterizations of individual types of IP conversations as well.

Multiplexing a single virtual circuit among multiple IP conversations introduces additional

virtual circuit management issues, with new implications for the fixed timeout strategies

suggested in [Cáceres92] and [Claffy94] or the adaptive strategies proposed by [Lund95].

For example, a connection’s lifetime may depend on the arrival patterns of traffic for mul-

tiple IP conversations, or on the relationships between different IP conversations multi-

plexed over that virtual circuit.

In Section 6.2, we present some prior work with virtual circuit management policies, both

in the form of research studies and actual implementations. Section 6.3 presents the three

different virtual circuit management schemes we evaluated in this study. The three follow-

ing sections describe simulation results (key results are summarized in Table 6-1). In

Section 6.4, we present the effects of caching idle SVCs used for IP traffic. We present a

similar comparison for the special case of per-router multiplexing in Section 6.5.

Section 6.6 examines the behavior of the virtual circuit cache, and its implications for the

signaling load on the ATM network. Finally, we present our conclusions in Section 6.7.

For IP-over-ATM policies using per-application and per-connection multiplexing, caching idle
ATM connections provides significant improvements in application performance.

For IP-over-ATM policies using per-router-pair multiplexing, there were no significant differ-
ences between any of the virtual circuit management policies.

For IP-over-ATM policies using per-router-pair multiplexing, the performance of switched vir-
tual circuits with caching enabled was identical to that with permanent virtual circuits.

Connection caching dramatically reduces the number and frequency of ATM connection estab-
lishments, at a nominal overhead.

Table 6-1. Summary of Virtual Circuit Management Results.

94

6.2 Prior Work

The time to establish a virtual circuit may be relatively long, especially in wide-area back-

bones with long propagation times. Therefore it may be useful to keep virtual circuits in

existence even when they are not actively being used to transmit data. A simple solution

that eliminates virtual circuit setup time altogether is to create a mesh of PVCs between all

pairs of endpoints. This approach is recommended by both [Cáceres92] and [Claffy94], but

has inherent scaling problems in the case of large ATM subnets.

When SVCs are being established and torn down dynamically, it may be possible to amor-

tize the connection setup time by caching virtual circuits in the hope they can be reused for

other IP conversations. The utility of such caching is dependent on the arrival and duration

of IP packets and conversations, as well as the characteristics of those conversations.

[Lund95] describes an adaptive strategy for computing virtual circuit holding times, which

involves gathering an empirical distribution of packet interarrivals. The approach is fairly

simple to implement and has shown promising results in trace-driven simulations.

The IP-over-ATM implementations in current production ATM LANs typically use either

SVCs with static timeouts or PVCs. For example, the FORE System ATM LAN ties the

lifetime of virtual circuits to a host’s ARP cache, which results in a timeout of fifteen min-

utes. Thus, any virtual circuit which is idle for longer than fifteen minutes is torn down

[Biagioni93].

[Maher95] documents the ATM signaling necessary to support the IP-over-ATM service

of [Laubach94]. It recommends that when switched virtual circuits are used, they should

employ an idle timeout of at least twenty minutes. However, no justification for this value

is given; it seems too long for setups using per-conversation multiplexing, given the short

duration of many IP conversations.

6.3 Virtual Circuit Management Schemes

In this work, we examined three different virtual circuit management policies. The first

was a simple approach based on PVCs, which we refer to simply as pvc. Networks using

PVCs to carry IP traffic (such as the XUNET II or BAGNET testbeds) typically have hard-

95

wired connections which are pre-configured into the network. While this approach does

not offer much flexibility, it is simple and avoids any dependence on having a functioning

signaling protocol. In our experiments, we simulated PVCs by using SVCs that, once

established, were never torn down. We feel that this approximation is reasonable, as these

connection setups all took place early in the simulations and their effects were likely

masked by other startup transients.

Another policy examined was a simple SVC scheme (svc), in which virtual circuits are

established on demand and torn down after some period of inactivity. In all these experi-

ments, we set this timeout to ten seconds for all connections. We note that the timeout

values we used, for this policy and the following one, were set somewhat arbitrarily to

reflect durations we felt to be reasonable. We based the timeouts on our belief that IP con-

versations (and gaps during them) tend to be short. However, we made no attempt, in this

work, to evaluate the benefits of longer or shorter timeouts.)

The third scheme we considered was a variant of the svc policy that allows caching of idle

connections (svccache). SVCs are established on demand as before. After a certain idle

time (ten seconds in our experiments), a virtual circuit becomes “unbound” from its IP con-

versation. For a somewhat longer period of time (300 seconds in our simulations, as con-

figured), the virtual circuit is available to any IP conversation needing the connection

(including the one that used the connection originally). If no conversation was able to make

use of the unbound SVC by the end of the 300 seconds, it is torn down.

For a new IP conversation to be able to make use of a cached ATM virtual circuit, the vir-

tual circuit needs to have a source and destination appropriate to the conversation. In the

case of QOS-aware policies, the cached connection also needs to have an appropriate set

of QOS parameters. In INSANE, each virtual circuit is tagged with the type of conversa-

tion that originally created it (e.g. telnet up, FTP down, audio). Currently, we require that

a virtual circuit have a type identical to that of a new request in order for it to be reused.

96

6.4 Effects of Caching on Switched Virtual Circuit Performance

In this section, we examine the effects of virtual circuit caching in IP-over-ATM setups

using switched virtual circuits. We compared the performance of different Internet appli-

cations using two virtual circuit management policies (svc and svccache) across two

different, applicable multiplexing policies (per-application and per-conversation), as well

as a variety of QOS policies.

We found that the FTP and HTTP applications showed significant improvements in file

transfer time when virtual circuit caching was enabled. Because both applications transfer

bursts of (typically) small files, eliminating the overhead to establish an ATM connection

was demonstrably beneficial to application performance. The multimedia applications

(audio and video) showed performance improvements in only a few cases, probably

because their conversations were relatively long-lived.

6.4.1 Telnet

We found that, in almost all cases, the use of a cache of idle virtual circuits significantly

reduced the connect time for new telnet conversations. This fact is unsurprising, since the

telnet connect time was entirely dependent on the overhead of setting up a TCP connection.

The wc-telnet scenarios were typical, in which we saw the setup times decrease by

158–165 ms (69–70%) at the median and 134–142 ms (41–42%) at the 90th percentile.

This effect is shown in Figure 6-1.

In comparison, the effects on telnet round-trip times were less visible. Only a few setups

exhibited significant changes to the distributions of response times; all those that did, how-

ever, demonstrated that the use of svccache virtual circuits was successful in improving

telnet performance. Figure 6-2 shows the effects in the nwc-telnet case, which showed

a 90 ms improvement (3–8%) at the median. This represented a significant difference in

the case of per-conversation multiplexing, but not app multiplexing.

6.4.2 FTP

In a variety of circumstances, FTP performance was significantly improved when we

enabled ATM connection caching. A simple case was the sp-ftp setup, whose results are

97

pictured in Figure 6-3 and Figure 6-4. In these scenarios, the median file transfer time and

90th percentile of session times showed statistically significant improvements of 13–17%

(34–61 ms) and 14–20% (298–466 ms), respectively.

Significant differences surfaced primarily when we used conv multiplexing. In the wc-

ftp setup, for example, file transfer times decreased by 27% at the median (0.13 seconds.

igure 6-1. Performance Effects of Virtual Circuit Caching on Telnet Connect Times, wc-
telnet QOS Policy.

0

0.1

0.2

0.3

0.4

0.5

app conv

T
el

ne
t C

on
ne

ct
 T

im
e

(s
ec

on
ds

)

90th Percentile, svc
Median, svc

90th Percentile, svccache
Median, svccache

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

app conv

T
el

ne
t R

ou
nd

-T
ri

p
T

im
e

(s
ec

on
ds

)

90th Percentile, svc
Median, svc

90th Percentile, svccache
Median, svccache

Figure 6-2. Performance Effects of Virtual Circuit Caching on Telnet Round-Trip Times,
nwc-telnet QOS Policy.

98

The median session time was shortened by 1.8 seconds (a 10% improvement). All of these

gains represented statistically significant differences. The differences with app multiplex-

ing were not statistically significant, and had much smaller values (the median file and ses-

sion times improved by only 0.03 and 0.87 seconds, respectively). We illustrate the

contrast in session completion times in Figure 6-5. These results seem reasonable, as we

0

0.5

1

1.5

2

app conv

FT
P

Fi
le

 T
ra

ns
fe

r
T

im
e

(s
ec

on
ds

)

90th Percentile, svc
Median, svccache

90th Percentile, svc
Median, svccache

Figure 6-3. Performance Effects of Virtual Circuit Caching on FTP File Retrieval Times,
sp-ftp QOS Policy.

0

5

10

15

20

25

app conv

FT
P

Se
ss

io
n

T
im

e
(s

ec
on

ds
)

90th Percentile, svc
Median, svccache

90th Percentile, svc
Median, svccache

Figure 6-4. Performance Effects of Virtual Circuit Caching on FTP Session Times, sp-
ftp QOS Policy.

99

would expect that the connection caches would be more effective (and more necessary)

without aggregation of multiple IP conversations into the same virtual circuit.

6.4.3 HTTP

As with FTP, application-level Web performance was generally improved by the use of

virtual circuit caching. One of the more apparent improvements was in the nwc-http

setup, which saw statistically significant differences in item and page transfer times for

both app and conv multiplexing. Median item transfer times improved by 120–259 ms

(16–36%) and the median page times improved by 299–383 ms (22–32%). We show these

gains in Figure 6-6 and Figure 6-7.

We note that, in the cases of both HTTP and FTP, we observed no interference between

different conversations using a cached virtual circuit, as we did with app multiplexing in

Chapter 5. We recall that, with the rate-controlled service disciplines, bursts from long

bulk transfers could cause subsequent transfers to be delayed, even if they were not simul-

taneous. There were no analogous effects with svccache, because the ten-second idle

timeout (before a virtual circuit could be reassigned to a new conversation) was enough for

the rate controllers to “forget” about the effects of prior traffic.1

0

100

200

300

400

500

app conv

FT
P

Se
ss

io
n

T
im

e
(s

ec
on

ds
)

90th Percentile, svc
Median, svc

90th Percentile, svccache
Median, svccache

Figure 6-5. Performance Effects of Virtual Circuit Caching on FTP Session Times, wc-
ftp QOS Policy.

100

We note that Persistent Connection HTTP (P-HTTP) [Padmanabhan94] reduces the

demand for TCP connections, because it can transfer multiple Web files over a single TCP

connection. This protocol would probably diminish the benefits of connection caching,

1. The implementation of INSANE’s RCSP rate controllers allows for each queue to maintain up to two
seconds’ worth of buffering and rate control information. Ten seconds of idle time is more than enough to
flush all the state from the rate controllers.

Figure 6-6. Performance Effects of Virtual Circuit Caching on HTTP Item Retrieval
Times, nwc-http QOS Policy.

0

1

2

3

4

5

6

app conv

H
T

T
P

It
em

 R
et

ri
ev

al
 T

im
e

(s
ec

on
ds

)

90th Percentile, svc
Median, svccache

90th Percentile, svc
Median, svccache

0

2

4

6

8

10

12

14

16

app conv

H
T

T
P

Pa
ge

 R
et

ri
ev

al
 T

im
e

(s
ec

on
ds

)

90th Percentile, svc
Median, svccache

90th Percentile, svc
Median, svccache

Figure 6-7. Performance Effects of Virtual Circuit Caching on HTTP Page Retrieval
Times, nwc-http QOS Policy.

101

because each Web page would require fewer TCP connections, and hence present fewer

opportunities for caching to improve performance. We did not, in this study, experiment

with the effects of a P-HTTP application. Our intuition, however, says that the combined

deployment of P-HTTP and connection caching would reduce file and page times at least

as much as either of them used separately.

6.4.4 Audio

For the most part, we observed no significant effects in audio performance arising from the

use of virtual circuit caching.

In some cases, however, we did observe large, statistically significant reductions in the

audio loss and overdue rates when we used the svccache policy. One such class of

setups was formed by those using the sp-qos1 QOS policy, in which we saw a loss rate

of 1.11–1.47% decrease to 0.76–0.78% with the introduction of caching. The overdue rates

similarly decreased from 2.71–3.38% to 1.42–2.08%. We show this improvement in

Figure 6-8.

The setups using the sp-av and wc-http QOS policies showed similar improvements

with caching. The reasons for these performance gains are not immediately apparent. Intu-

itively, we would not expect audio performance to be significantly affected by the use of

0

1

2

3

4

5

app conv

A
ud

io
 L

os
s/

O
ve

rd
ue

 R
at

e
(%

)

Audio Overdue, svc
Audio Loss, svc

Audio Overdue, svccache
Audio Loss, svccache

Figure 6-8. Performance Effects of Virtual Circuit Caching on Audio Loss and Overdue
Rates, sp-qos1 Policy.

102

the virtual circuit caching policy because its effects at connection setup time should influ-

ence only a small part of the lifetime of any one audio conversation.

6.4.5 Video

The enabling of virtual circuit caching had a similar effect on the performance of the video

applications. In most cases, the svccache policy offered no statistically significant

improvements over the svc policy. However, in a handful of cases, we observed lower

loss rates when connection caching was used, together with the conv multiplexing policy.

For example, in the sp-ftp scenarios, we saw the video loss rate decrease from 4.64–

8.11% to 4.09–4.47%, as shown in Figure 6-9.

As with improvements to audio performance, the reasons for these differences are not

immediately clear. One possible explanation may lie with the lower amount of signaling

traffic (sent at a higher priority than the default, best-effort data). Few signaling messages

can cause data sent with the default QOS to receive better treatment, because there is less

competition from higher-priority signaling traffic.

6.5 The Special Case of Per-Router Multiplexing

This section examines the effects of connection caching in scenarios that used per-router

multiplexing. The experimental results were not terribly interesting, in that connection

0

2

4

6

8

10

app conv

V
id

eo
 L

os
s

R
at

e
(%

)

Video Overdue, svc
Video Overdue, svccache

Figure 6-9. Performance Effects of Virtual Circuit Caching on Video Loss Rate, sp-ftp
QOS Policy.

103

caching provided few benefits. We somewhat expected this outcome. Given the fact that

connection establishments under per-router multiplexing are rare events, it is difficult for

different virtual circuit management policies to have much impact on application perfor-

mance.

We note that with router multiplexing, the total stream of aggregated traffic sent over

any given virtual circuit contained few idle periods longer than the ten-second idle timeout

for teardown (svc) or caching (svccache). From Section 5.5, we recall that, for any sce-

narios using router multiplexing and svc VCs, we saw at most 18 more connections

than were needed for full connectivity, over the course of an entire simulation. Thus, there

were at most 18 idle virtual circuit timeouts over the 4000-second run, very few opportu-

nities for any differences in virtual circuit management policies to have an influence.

This fact can account for two results. First, the scenarios using pvc and svccache poli-

cies yielded exactly identical performance for all metrics. As explanation, we note that vir-

tual circuits were never idle long enough in the caching scenarios to be torn down. In all

cases, another packet would arrive to reactivate a cached connection before it was torn

down (i.e. within five minutes). Thus, except for a small amount of bookkeeping in routers

(whose effects on network performance were not modeled), the entire network behaved

identically to the case of permanent virtual circuits.

The second result was that there were no significant performance differences among any

of the virtual circuit management policies when we used per-router multiplexing. Given

the results from Section 5.5, this is hardly surprising. There were simply not enough peri-

ods of idle time (and subsequent virtual circuit teardowns) for caching (or the use of PVCs)

to effect much improvement over the case of uncached SVCs.

6.6 Cache Effectiveness

The virtual circuit cache returned surprisingly high hit rates. It decreased both the number

and rate of virtual circuit setups required by more than an order of magnitude. Although

the cache imposed a certain overhead in terms of additional virtual circuits required, we

judged this cost to be small.

104

For the noqos setups (where all virtual circuits were treated identically for the purposes

of being able to carry traffic), we observed cache hit rates of 97–98%. For the static priority

schemes and most of the QOS policies using any form of RCSP, the virtual circuit caches

in the routers were able to absorb 95% of the virtual circuit setups with app multiplexing

and approximately 92% with conv multiplexing.

Some of the QOS policies (wc-isp, wc-qos1, nwc-isp, and nwc-qos1) approached

or surpassed the capacity of the ATM network to support guaranteed connections, which

resulted in a large number of virtual circuit establishment failures.2 Because there was not

a large pool of idle virtual circuits to support new real-time connections, the virtual circuit

cache was significantly less effective. The hit rates in these scenarios were 65–69% for

app multiplexing and 56–59% for conv multiplexing.

An important implication of the high cache hit rates is that it drastically reduces the rate of

signaling requests made (by ATM-connected routers) by one or two orders of magnitude.

The ability to reduce the number of virtual circuit setups can be crucial; [Schmidt93] and

others have cited high signaling rates as potential bottlenecks for high-speed ATM net-

works.3 To investigate this effect, we collected the number of virtual circuit establishments

performed each second at two of the six routers4, as well as totals across all routers in the

network.

In our simulation runs, noqos-conv-svc scenarios required an average of 168,936 vir-

tual circuits. Over a 4000-second simulation run, the six routers in our network therefore

performed an average of 7.0 establishments per second. The two busiest routers recorded

2. We recall that a virtual circuit has resources allocated to it throughout its lifetime, even when idle. These
resources, such as scheduling priority and bandwidth, are unavailable to other guaranteed-performance con-
nections, although they may be temporarily exploited by best-effort traffic if unused by their “owning” con-
nection.

3. Although these figures are not necessarily indicative of current ATM WAN virtual circuit setup perfor-
mance, we note that XUNET II needed 300 ms (!) per hop to establish a virtual circuit. An ATM LAN based
on an early version of the Synoptics (now Bay Networks) LattisCell 10114 switch took 70 ms to establish a
switched virtual circuit over a one- or two-hop path.

4. Due to the Zipf’s Law distribution for selecting FTP and Web servers in the user workload generator, the
distribution of traffic is not symmetric. We elected to measure the call setup rates at the sites containing the
two most common servers, on the rationale that this choice would give us the “worst case” (i.e. highest) call
setup rates.

105

a peak call setup rate of 37 calls per second. By contrast, the noqos-conv-svccache

setups required only 4337 virtual circuit setups, on average. This translates to an average

setup rate of 0.18 establishments per second per router, with an observed peak of 25 calls

per second.

The effect with per-application multiplexing was similar. The noqos-app-svc scenar-

ios required, on average, 71,136 connection setups (3.0 establishments per second per

router). When we enabled virtual circuit caching, we observed an average of 1424 estab-

lishments per run (each router performed an average of 0.06 setups per second). However,

the peak rate of connection establishments was the same regardless of whether virtual cir-

cuit caching was in use: 15 connections per second.

Another quantity of interest when evaluating the usefulness of virtual circuit caching is the

maximum number of virtual circuits in use at any one time. A large cache may be imprac-

tical if it requires a large number of idle circuits to be useful. Thus, we measured the max-

imum number of virtual circuits used by each of the routers, sampled at one-second

intervals.

In the noqos scenarios using per-application multiplexing, we observed a maximum of

162 connections in use at any time with no caching and at most 200 connections used with

caching enabled, an increase of 24%. To run the per-conversation multiplexing scenarios,

we needed a maximum of 341 virtual circuits from a router with no virtual circuit caching

and 472 virtual circuits with caching enabled, a “cost” of 38%.

Although we did not keep statistics on virtual circuit usage in the ATM switches, we note

that we configured our switches to support a maximum of 8192 virtual circuits per port,

and that we saw no evidence of any call setup failures due to a lack of virtual circuit iden-

tifiers.

6.7 Conclusions

In this chapter, we examined the effects of three ATM virtual circuit management policies

on end-to-end Internet application performance. We looked at a policy using permanent

106

virtual circuits (pvc), a simple switched virtual circuit policy (svc), and a variant which

caches idle switched virtual circuits for later reuse (svccache).

We found that caching idle ATM connections provides significant improvements in appli-

cation performance, in scenarios using per-application and per-conversation multiplexing.

We observed no significant effects in setups using per-router multiplexing; however, we

found that, with the static timeout values we chose, the operation of the network with

cached SVCs was identical to that with PVCs. Finally, we examined the signaling load at

some of the ATM-attached routers and saw that connection caching dramatically reduced

the number of call setups required, in exchange for a small number of additional virtual

circuits.

Based on these results, we believe that circuit caching should be implemented in IP-over-

ATM networks using switched virtual circuits. Given the short duration of many IP con-

versations, the elimination of virtual circuit setup overheads can significantly improve end-

to-end application performance and reduce the signaling load on the ATM network.

We note several possible areas of further study. A natural issue to raise is that of the time-

out values used to teardown virtual circuits (or to cache them, when appropriate). While

we only used a fixed (“reasonable”) set of values, it would be useful to investigate a range

of different timeout values. We feel, in particular, that the current timeout values are longer

than necessary for many bulk transfer applications such as FTP or HTTP. Telnet, however,

may benefit from longer timeouts, so that virtual circuits are not torn down during periods

of “user think time”. This observation raises the possibility of setting timeouts on a per-

traffic-type basis, or a dynamic scheme such as that proposed in [Lund95].

Finally, keeping a cache of idle virtual circuits raises some pricing issues, which we did

not address in this study. In particular, it is not clear who should “pay” for resources, such

as network bandwidth and scheduling priority, which are allocated to idle, cached connec-

tions, and thus unavailable for other guaranteed connections. Modifying or releasing the

resources allocated to an idle connection might reduce the penalties associated with cach-

ing. However, this would require a somewhat richer interaction with the ATM network

than our models currently support.

107

7 Conclusions

In this dissertation, we have investigated three issues in the design of IP-over-ATM sys-

tems. We have examined various alternatives for policies addressing these issues, and eval-

uated their impacts on end-to-end Internet application performance, via a large-scale

network simulation.

In Section 7.1, we summarize the findings and contributions of this research. We present

some possible areas for future work in Section 7.2. Lastly, we present some final remarks

in Section 7.3.

7.1 Summary of Contributions

In Chapter 1, we motivated our research by noting the growing popularity of Asynchro-

nous Transfer Mode (ATM) networks, and the desire to use them as an effective part of the

global Internet, running the Internet Protocol (IP).

We provided some background on both IP and ATM in Chapter 2. We outlined some of

the contrasts between the two types of networks, in particular the connection models, the

differing support for quality of service and performance guarantees, and the differences in

types of packets. From the resulting research issues, we sketched out a space of possible

IP-over-ATM policies to be implemented by ATM-attached hosts and routers. This space

consists of policies for using ATM quality of service, multiplexing, and connection man-

agement to support Internet applications.

Chapter 3 described our methodology. We outlined the set of IP-over-ATM policies under

investigation. Next we described a set of simulation experiments, which measured the per-

formance of common Internet applications (expressed using metrics such as file transfer

108

times or packet loss rates). These measurements were performed on applications as they

ran in a large, simulated IP internetwork with an ATM backbone. We showed how we

varied the IP-over-ATM policies to investigate their effects on application performance.

Finally, that chapter described the design and implementation of a new network simulation

tool, the Internet Simulated ATM Networking Environment (INSANE).

In Chapter 4, we examined a variety of ATM scheduling disciplines, including First-

Come-First-Served, Static Priority, and two variants of Rate-Controlled Static Priority. We

constructed a number of policies for using these scheduling disciplines to give preferential

treatment to different Internet applications, and measured the end-to-end performance

effects. We found that a Static Priority scheduler can be effective at giving preference to

any application, but at the risk of starving out low priority traffic. We looked at the effects

of RCSP’s traffic policing, and found that, although it could prevent applications from

monopolizing network resources, the benefits derived by other applications were uncer-

tain. Finally, we saw that distributed jitter control (such as that provided by RCSP sched-

uling) was useful in controlling losses in long TCP bulk transfers. From these results, we

conclude that a Static Priority scheme (if used carefully) may be the most effective in offer-

ing differential treatment of various traffic types.

We examined three different IP-over-ATM multiplexing policies in Chapter 5. Each

aggregated increasing amounts of traffic onto individual ATM virtual circuits. We saw the

performance of small file transfers improve with aggregation, due to the elimination of vir-

tual circuit setup overheads. Long files, however, fared better on their own individual con-

nections in networks that performed traffic policing, due to an undesirable interaction

between different transfers sharing the same ATM connection. Finally, we saw that, at very

high levels of aggregation, contention for buffers increased packet drops for loss-sensitive

data such as audio. At least for short transfers, IP conversations should be aggregated onto

common virtual circuits, using a policy such as per-application multiplexing. The optimum

strategy for longer transfers depends somewhat on the scheduling policy in use in the ATM

network, but in general placing them on their own connections is preferable.

109

Finally, in Chapter 6, we looked at three policies for managing ATM virtual circuits being

used to carry Internet traffic. The first two policies used ATM SVCs to carry IP traffic. In

the first, virtual circuits were created on demand and torn down when idle. In the second,

ATM-attached hosts and routers kept a cache of idle connections, which could be reused

for other, potentially unrelated IP conversations. We found that in networks doing either

per-application or per-conversation multiplexing, applications benefited from the use of

virtual circuit caching. Moreover, connection caching was beneficial to the network as

well, as it dramatically lowered the volume and frequency of signalling traffic. From these

results, we recommend ATM networks using switched virtual circuits implement connec-

tion caching.

The last virtual circuit management policy we examined used Permanent Virtual Circuits,

which are useful in networks using per-router-pair multiplexing. We found that in such net-

works, there were no significant differences in application performance between any of the

virtual circuit management policies we studied.

7.2 Future Work

There are, of course, many areas for future work in the area of IP-over-ATM systems. We

touch on some of them briefly in this section.

As the Internet continues to evolve and grow, so will its workload. New applications con-

tinue to be deployed, each with their own traffic patterns and characteristics. Simulations

or analysis of future networks will need to take these developments into account when con-

structing a workload to be used for evaluation purposes.

In addition, new network protocols will have some implications on our work. For example,

IPv6 includes support for “flows”, which can be used to identify a stream of related packets

at the network layer. Conceivably, this information could be used in our scheme to identify

particular IP conversations with less overhead and more reliably than our current scheme,

which is based on using port numbers and other higher-layer identifiers.

Real-world ATM networks will likely have their own idiosyncracies and bottlenecks.

Studies targeted towards the characteristics of a particular network may yield slightly dif-

110

ferent (but hopefully not too different) results from those obtained in our idealized ATM

environment.

Each of the three design issues we investigated has possibilities for future investigation, as

well. Our examination of different QOS policies could be extended to include a study of

different sets of traffic parameters for each type of application. Some other methods of

specifying performance guarantees could be attempted, including measurement-based

schemes in routers or the use of an explicit signalling protocol such as RSVP.

There are other multiplexing policies that could be investigated, beyond those we studied

here. It would also be useful to investigate the implications of having some hybrid policies

in a network (for example, aggregating many short conversations together, but sending the

data for long conversations on their own connections).

Finally, a study of different timing constants for our virtual circuit management policies

would be useful—either sets of static timeouts (perhaps set on a per-application basis) or

a dynamic timeout scheme. As with multiplexing, it could be interesting to investigate the

effects of hybrid schemes. One example would be to send short conversations on perma-

nent virtual circuits, but to send long conversations on their own, dedicated, on-demand

connections (assuming a router could determine the length of a conversation in advance).

7.3 Some Final Remarks

While the evaluations performed in this research yielded some initial results and guidelines

for IP-over-ATM policies, the utility of these policies will ultimately depend on the traffic

workload and administrative policies of each individual site. We believe that, in order to

gain maximum benefit from the implementation of these policies, vendors implementing

them should provide each site the ability to define and evaluate the policies to be used on

that particular site’s networks.

We believe that IP and ATM networks can interoperate effectively; the issues we

addressed in this research explored the space of possible policies governing their interac-

tions. The policies we investigated were designed to try to gain the benefits of each type of

network, while minimizing their respective weaknesses. We believe that similar opportu-

111

nities exist for other situations in which two dissimilar networks meet, and must be made

to work together.

112

A An Empirical Model of HTTP Traffic

We have developed an empirically-derived model of HTTP network traffic, designed to

provide a synthetic workload to a simulation of a wide-area IP internetwork. This model

captures a variety of aspects of World Wide Web network activity. At the lowest level, it

describes the sizes of individual Web files; these files combine to produce multi-file doc-

uments, separated by “user think time”. At the highest level, our model describes the

browsing behavior of users, both within a visit to a single Web server and between differ-

ent Web servers. Our model is based on network packet traces, and uses analysis and heu-

ristics to derive information about files and higher-layer units of information.

A.1 Background

The World Wide Web (frequently shortened to WWW or Web) is a collection of documents

and services available to the global Internet. Servers furnish these documents on request to

clients (also known as browsers). Each document (sometimes called a page) may consist

of a number of files. For example, a multi-file document could consist of text represented

using the Hypertext Markup Language (HTML) [Berners-Lee95], along with some

number of images to be displayed “inline” with the text.

The Hypertext Transfer Protocol (HTTP) [Berners-Lee96] is a request-response protocol

for transferring the files making up the parts of Web documents. Each transfer consists of

the client requesting a file from the server, then the server replying with the requested file

(or an error notification). Both the request and reply contain identification and control

information in headers. HTTP uses the services of TCP [Postel81b] for reliable transport

across the unreliable global Internet. In current versions of HTTP, each TCP connection

can be used for at most one HTTP retrieval. Future versions of HTTP, as described in

113

[Fielding96], incorporate the work of [Padmanabhan94] and [Mogul95], which propose

the reuse of TCP connections for multiple retrievals between the same client and server.

We will occasionally take several liberties with terminology. Strictly speaking, Web doc-

uments can be transferred by means other than HTTP. For example, the File Transfer Pro-

tocol FTP [Postel85] can be used to serve documents where HTTP cannot be deployed for

administrative reasons and FTP servers exist already. Thus, the terms “Web server” and

“HTTP server” are not strictly synonymous, though we will frequently use them inter-

changeably. Our usage of the terms “Web browser” and “HTTP client” is similar. Contexts

in which differentiation is required should be easily apparent.

A.2 Prior Work

In this section, we summarize three approaches that have been taken in attempting to char-

acterize Internet applications. Two methods, server logs and client logs, have been used in

prior investigations of the World Wide Web. The last approach, traffic traces, has been

used for past studies of a number of other Internet applications, such as file transfers and

remote logins.

A.2.1 Server Logs

Most Web servers keep logs of the requests and files they have served, for reasons ranging

from operational monitoring to collecting demographic information. A workload model

can be created by processing the logs of a running Web server. In some sense this approach

is the easiest to take, because the machinery for collecting data already exists and, in fact,

the data is very likely being collected anyway. Indeed, for some studies, such as [Mogul95]

and [Arlitt96], it is appropriate to model a stream of HTTP requests arriving at a Web

server.

However, there are two principal drawbacks to this approach. One large disadvantage of

using server logs is that they cannot easily capture user access patterns across multiple

Web servers. In particular, it may be difficult to make any determination about the locality

of references during any given user session. Another shortcoming is that current server log

formats do not capture any aspects of HTTP overheads, such as protocol headers.

114

A.2.2 Client Logs

[Crovella96], [Cunha95], and [Catledge95] relied on data gathered by instrumenting the

NCSA Mosaic browser [Mosaic95] to log all retrievals made during Web user sessions.

The instrumented systems were in public computing laboratories in academic environ-

ments. These studies were primarily concerned with investigating various characteristics

of Web accesses. However, based on these types of measurements, it would be possible to

construct a corresponding model, suitable for generating a synthetic workload.

Unlike server logs, this approach captures user accesses between multiple Web servers

quite well. In addition, it allows the characterization of the effects of client-side caching of

documents (or parts of documents). However, this technique requires that browsers be able

to log their requests or, more likely, the availability of source code for the Web browser so

that such logging can be added. Source code for newer Web browsers, including the pop-

ular Netscape Navigator [Netscape96], is generally not available. In addition, supporting a

variety of browsers would be difficult if modifications for logging needed to be made to

each one.

A.2.3 Packet Traces

Another method of gathering workload data consists of analyzing packet traces taken from

a subnet carrying HTTP traffic, typically an Ethernet or other broadcast-style LAN.1 From

the packet traces and knowledge about the higher-layer protocols used, traffic analysis can

yield a model of the behavior of the original application. This approach has been used in a

number of other traffic studies, such as [Cáceres91] and [Paxson91], that predate the Web.

[Stevens96] analyzes the packets arriving at an HTTP server and presents some interesting

statistics and observations. [Danzig91] describes a library of traffic models for common

(circa 1991) Internet applications, which, in fact, we used for several of INSANE’s other

simulated applications. [Paxson94a] additionally describes analytic models derived from

traffic traces, which have a more compact representation than purely empirical models and

can be parameterized to reflect specific networks more accurately.

1. It is possible to use this methodology on a point-to-point link acting as a transit network, but such oppor-
tunities are less common.

115

This approach eliminates the principal disadvantages of the two previous methods men-

tioned. However, it too introduces drawbacks. We recall that models based on application-

level logs can easily record higher-level information such as specific files requested, HTTP

message types, and document types. While such information could in principle be gleaned

from a packet trace, it would involve considerable effort in reconstructing the contents of

each TCP connection. In addition, the effects of client caching of documents are more dif-

ficult to ascertain, since only cache misses generate network traffic detectable by a packet

trace.

A.3 Methodology

We chose to use a packet trace-based approach for our model, principally because it

allowed us to capture the behavior of individual users and we would be able to use this

methodology with any popular, currently-deployed HTTP clients. While this approach

loses higher-level information such as the actual files accessed, we felt that such a charac-

terization is not essential to a network workload model.

We used the freely-available tcpdump packet capture utility [Jacobson95] running on a

DEC Alpha 3000/300 to record packet headers on a shared 10 Mbps Ethernet in the Com-

puter Science Division at the University of California at Berkeley, during four periods in

late 1995. This procedure saved the TCP and IP headers of each packet, as well as a small

number of payload bytes. These data were saved to disk for off-line processing.

The subnet examined is a stub network (no transit traffic), one of a dozen or so in use in

the Computer Science Division. There are approximately one hundred hosts on this subnet;

the majority of them are desktop UNIX workstations, each principally used by a single

user. The user community consists primarily of Computer Science graduate students.

While no statistics are available on the relative popularity of different Web clients used in

this environment, operational experience suggests that the prevalent one is Netscape Nav-

igator [Netscape96]. There are also several Web servers on this subnet, associated with

various research groups.

116

Most HTTP servers bind to a well-known TCP port (port 80).2 By looking for all TCP

packets to or from this well-known port, we captured what we believe is the vast majority

of HTTP traffic. Table A-1 summarizes our traffic traces. The first three traces were col-

lected as a part of an effort to examine various types of network traffic (not just HTTP traf-

fic); the packet counts from these traces include only those packets attributable to HTTP.

The last traffic trace collected HTTP packets only. From these streams of packets, we

extracted those comprising HTTP connections originating from clients on the tracing sub-

net.

Although we do not have complete packet loss figures for these traces, we did record the

loss of approximately 6000 out of 44,000,000 packets during the 1 November 1995 trace

(before filtering to isolate HTTP packets). These figures yield a packet loss rate of only

0.014%. Similar packet capture experiments using this hardware and network have pro-

duced figures consistent with this loss rate.

A.4 Model

Our model of HTTP traffic captures logically meaningful parameters of Web client behav-

ior such as files sizes and user “think times”. The traffic traces described in the preceding

section provided us with empirical probability distributions describing various compo-

nents of this behavior. We used these distributions to determine the characteristics of a syn-

thetic workload. In this section, we present the various components of our model, which

are summarized in Table A-2.

2. In a recent study of the characteristics of HTML documents indexed by the Inktomi “Web crawler”,
approximately 94% of the documents surveyed were accessed using the normal TCP port 80 [Woodruff96].

Start Time End Time
Number of HTTP
Packets

Tue Sep 19 16:12:33 1995 Thu Sep 21 07:53:22 1995 186068

Wed Oct 11 09:48:53 1995 Thu Oct 12 14:10:16 1995 458264

Wed Nov 1 11:22:47 1995 Thu Nov 2 10:53:12 1995 369671

Mon Nov 20 11:13:36 1995 Sun Nov 26 05:28:17 1995 676256

Table A-1. Summary of Traffic Traces.

117

At the lowest level, our model deals with individual HTTP transfers, each of which con-

sists of a single request-reply pair of messages. In the most common case, the client appli-

cation sends a request for some data; the server in turn replies by supplying that data. The

first two quantities of our model are therefore the request length and reply length of HTTP

transfers.3 The request and reply are both transmitted over a single TCP connection [Bern-

ers-Lee96].

At first glance, it may seem more appropriate for a model of network traffic to concern

itself instead with the number, size, and interarrival times of TCP segments. However, we

note that, in particular, packet interarrival times are governed by the TCP flow control and

congestion control algorithms. These algorithms depend in part on the latency and effec-

tive bandwidth on the path between the client and server. Since this information cannot be

known a priori, we conclude that an accurate packet-level network simulation will depend

on a simulation of the actual TCP algorithms. This is in fact the approach taken for other

types of TCP bulk transfers in the traffic model described in [Danzig91]. In a similar fash-

ion, our model generates transfers that need to be run through INSANE’s TCP algorithms;

the model does not generate packet sizes and arrival times by itself.

Web documents can consist of multiple files. Thus, a server and client may need to employ

multiple HTTP transactions, each of which requires a distinct TCP connection, to transfer

a single document. For example, a document could consist of HTML text [Berners-Lee95],

3. [Mah97] presents a slightly more sophisticated model, which describes the request and reply lengths of
the first HTTP transfer on any Web page separately from that of any remaining retrievals for that page.

Quantity Units Description

request length bytes HTTP request length

reply length bytes HTTP reply length

document size files Number of files per document

think time seconds Interval between retrieval of two successive docu-
ments

consecutive document
retrievals

pages Number of consecutive documents retrieved from
any given server

server selection server Relative popularity of any Web server, used to
select each succeeding server accessed

Table A-2. Quantities Modeled.

118

which in turn could specify three images to be displayed “inline” in the body of the docu-

ment. Such a document would require four TCP connections, each serving one HTTP

request and reply. The next higher level of behavior above individual files is naturally the

Web document, characterized in terms of the number of files needed to represent a docu-

ment.

Between Web page retrievals, the user is generally considering her next action. We admit

the difficulty of characterizing user behavior, due to its dependency on various human fac-

tors beyond the scope of this study. However, we can construct a distribution of user think

time based on empirical observations.

Assuming that users will tend to access strings of documents from the same server, it is

useful to characterize the locality of reference between different Web pages. We therefore

define the consecutive document retrievals distribution as the number of consecutive pages

that a user will retrieve from a single Web server before moving to a new one (either as a

result of following hyperlinks in an existing document, or by selecting a completely unre-

lated document).4

Finally, the server selection distribution defines the relative popularity of each Web server,

in terms of how likely it is that a particular server will be accessed for a set of consecutive

document retrievals.

A.5 Experimental Results

From our traffic traces and subsequent analysis, we derived the various probability distri-

butions for the different components of our model. We found these distributions to be con-

sistent with the results of existing Web measurement studies. We have summarized the

more interesting facets of these measurements in Table A-3.

A.5.1 Anomalies

In some cases, we noticed odd trends in our data, which indicated a large number of nearly-

identical Web documents transferred periodically. For example, the 11 October 1995 trace

4. Implicit in this component of the model is the additional assumption that all the components of a Web
document tend to come from the same server.

119

showed a number of Web page retrievals with interarrival times of about five minutes.

There were 291 such transfers, accounting for approximately 20% of those transferred

during the whole trace. Upon further investigation, we determined that the documents

came from a Web server that displayed real-time still images of the San Francisco, CA sky-

line. A Web page used an extension to HTML which caused clients to automatically reload

documents every five minutes, thus updating the picture. As these (and other) periodic

HTTP retrievals were skewing our data, we removed them from our traces prior to further

analysis.5

A.5.2 Request Length

HTTP requests are sent from a client to a server. They typically specify a file to retrieve,

although they may also provide information to a computation to be performed on the

server. Also contained in each request are some identifying fields about the user, the client

software, and the request itself.

The only user bytes sent from client to server are those contained as a part of the HTTP

request. Thus, we measured the request sizes by simply counting the number of bytes in

the appropriate direction of each TCP connection, summed over all packets. The statistics

summarizing the requests in our four traces are shown in Table A-4.

The cumulative distribution functions (CDFs) for the request size distributions are shown

in Figure A-1. The reply sizes in our traces all exhibited a bimodal distribution, with one

large peak occurring around 250 bytes and another, smaller one around 1 KB. We believe

5. While it may be argued that these retrievals should contribute to our traffic model since they actually
occurred in real life, the nature of this model is such that it cannot accurately capture the correlations
between successive document retrievals from such a Web client. A model attempting to characterize such
periodic Web traffic should explicitly account for this behavior.

HTTP request sizes show a bimodal distribution.

HTTP reply sizes have a heavy-tailed distribution, and tend to be larger than request sizes.

A simple heuristic based on timing can be used to group individual files into documents.

The number of files per document tends to be small; 80% of documents required less than four file trans-
fers.

The number of consecutive documents retrieved from a given server tends to be small. 80% of visits to a
server’s document space resulted in fewer than six documents being retrieved.

Table A-3. Selected Measurement Results.

120

that the former requests correspond to simple file retrievals, while the latter may contain

more complex requests such as those generated by HTML forms. However, there is insuf-

ficient information in our existing traces to prove or disprove this hypothesis. (Investigat-

ing further would require packet traces containing all or most of the payload bytes from

each packet.)

A.5.3 Reply Length

The HTTP reply consists of the bytes sent from the server to the client. Typically, the reply

contains either HTML text or some multimedia data (e.g. an image or audio clip) to be dis-

played by the Web client. In the case of an error (e.g. a nonexistent file), the HTTP reply

contains an error message. As with HTTP requests, some identifying information is also

included.

19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995

Number 5030 5699 3659 18034

Minimum Size 10 40 40 8

Maximum Size 1825 1786 1333 2404

Mean Size 356 327 325 301

Median Size 231 244 235 244

Table A-4. Summary of HTTP Request Lengths (in Bytes).

Figure A-1. Cumulative Distribution Functions of HTTP Request Lengths.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

C
D

F

Request Length in Bytes

19 September 1995
11 October 1995

1 November 1995
20 November 1995

121

In Table A-5, we present a summary of the HTTP replies recorded in our four traces. The

CDFs for the reply size distributions are shown in Figure A-2. We note that two of the max-

imum file sizes are identical. Upon further investigation, we found that these replies were

both generated by downloads of a single large data archive file from a Web server operated

by a local research group.

In each of the traces, the minimum reply length was very short (only tens of bytes). It is

likely that these replies represent either errors or “not modified” responses to If-Modi-

fied-Since (conditional document retrieval) requests. While the actual length of some

files may indeed be in the range of tens of bytes, the addition of HTTP headers makes the

reply messages somewhat longer.

19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995

Number 5030 5699 3659 18,034

Minimum Size 62 81 57 30

Maximum
Size

8,146,976 3,270,319 1,740,705 8,146,976

Mean Size 10664 8899 8319 8812

Median 2035 1532 2179 2127

Table A-5. Summary of HTTP Reply Lengths (in Bytes).

Figure A-2. Cumulative Distribution Functions of HTTP Reply Lengths.

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000

C
D

F

Reply Length in Bytes

19 September 1995
11 October 1995

1 November 1995
20 November 1995

122

We note that the maximum reply sizes are rather large (over 1 MB in each of the traces).

Furthermore, the means (8–10 KB) are much larger than the median reply sizes (about 2

KB). These characteristics are consistent with distributions that are “heavy-tailed” (with a

large amount of the probability mass in the tail of the distribution). It has been in fact dem-

onstrated that WWW file sizes are heavy-tailed [Crovella96].

On the assumption that HTTP retrievals generally result in the transfer of a WWW file (and

in particular, the assumption that large HTTP replies contain WWW files), it seems natural

to expect that HTTP replies would share this characteristic. We repeated the analysis of

[Crovella96] on our data, and found that reply sizes above 1 KB are reasonably well-mod-

eled by Pareto distributions with estimates ranging from to .6 Fur-

ther details are given in Table A-6. By comparison, [Crovella96] arrived at an estimate of

.

A.5.4 Page Length

Determining the number of files per page is less straightforward, because we cannot deter-

mine exactly which TCP connections transferred parts of a single document. An HTTP

client merely issues the requests for the files making up a given document, in succession.

We therefore used two simple heuristics to determine whether two HTTP connections

belong to the same document. First, the two connections must originate from the same IP

address, since retrievals from two different client machines cannot possibly belong to the

same document. We note that it is possible for two connections from the same IP address

6. The Pareto distribution is a “heavy-tailed” probability distribution with a CDF given by

, where is the minimum value of .

19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995

1.05 1.04 1.09 1.14

0.98 0.99 0.97 0.98

Table A-6. Estimates of the Parameter for the Tail of HTTP Reply Size
Distributions. is the coefficient of determination, and takes values in the range

. Values near 1 indicate a “good” fit of the regression, and that the simple
linear regression used to estimate can account for nearly all the variation.

α α 1.04= α 1.14=

F x() P X x≤[] 1
k
x
-- 

  α
–= = k X

α 1.06=

α

R
2

α
R

2

0…1[]
α

123

to be associated with two unrelated documents, which can happen in the case that two dif-

ferent users on the same host fetch a document at the same time. However, we evaluated

this possibility as unlikely, because the end hosts were workstations each used almost

exclusively by a single user.

Second, the two connections cannot be separated by “too much time”, an interval deter-

mined by a parameter we call . More formally, let and be two HTTP connec-

tions. Let be the arrival time of the starting packet of connection and let be

the arrival time of the ending packet of connection . Assuming , we judge

 and to belong to the same document only if . If

, the two connections overlap and we assume that their respective

files belong to the same document. This latter condition can occur with browsers that use

multiple, overlapping TCP connections to improve interactive performance, such as

Netscape Navigator. Figure A-3 illustrates the role of in determining the relation

between two HTTP connections.

Tthresh c1 c2

S c() c E c()

c S c1() S c2()<

c1 c2 S c2() E c1()– Tthresh≤

S c1() S c2() E c1()< <

Tthresh

c2c1

Tthresh

c2c1

Tthresh

c2c1

Tthresh

Figure A-3. Heuristic for Determining the Relation Between Two HTTP Connections.
Timelines run left-to-right; TCP connections are represented by thick arrows. In the top

timeline, starts within time after the end of ; thus we judge and to
belong to the same document. In the center timeline, the gap between and is greater
han ; thus the two belong to different documents. In the bottom document, starts

before finishes; in this case the two are judged to belong to the same document.

c2 Tthresh c1 c1 c2
c1 c2

Tthresh c2
c1

Time

Time

Time

124

This heuristic requires the definition of a suitable value of . As becomes very

short, it may become smaller than the time necessary for an HTTP client to initiate a

retrieval. In this case, connections which really belong to the same Web document will be

falsely classified as belonging to different documents. Conversely, as becomes

large, it may become longer than the time for a user to react to the displayed document and

select a new document to view. This can make files from different pages appear to be part

of the same document.

The analysis in [Crovella96] required a similar classification in order to analyze the distri-

bution of idle times between connections. This analysis classified files separated by less

than one second of idle time as belonging to the same document, due to the limitations of

the users’ reaction time. Idle times greater than 30 seconds were deemed to separate inde-

pendent documents, as few items would take longer to be processed and displayed. Idle

times in the intermediate range were assumed to belong to a “transition” region. According

to this reasoning, reasonable values for can be found in the range

.

We picked for this study. The primary influence on our choice of this

value is that users will generally take longer than one second to react to the display of a

new page and order a new document retrieval. For HTTP clients that perform multiple

overlapping file transfers, the time to process and display a file does not affect the choice

of , as the various components of a multipart document are downloaded, processed,

and displayed in parallel.

Given our choice of an idle threshold, we characterized the number of files per document,

as shown in Table A-7. We note that in the survey of HTML documents in [Bray96],

slightly more than half of all pages contained either zero or one inlined image, correspond-

ing to either one or two connections per document. Considering that some of our “docu-

ments” were actually single-file (thus, single-connection) downloads, which would tend to

skew this distribution downward, we feel that our observations are consistent with this sta-

tistic.

thresh thresh

Tthresh

Tthresh

1 sec Tthresh 30 sec< <

Tthresh 1 sec=

Tthresh

125

We note that although the distributions of the number of files per document varies as

 changes, they are very similar for values around . Thus, the exact

choice of is not critical to our analysis. Figure A-4 illustrates this fact graphically,

for the set of HTTP connections recorded in the 19 September 1995 trace.

A.5.5 User Think Time

Given a selection of , the empirical distribution of user think times between pages

can be determined by the set of all interconnection idle times . In Table A-8,

we summarize the user think times extracted from the four Web traces. The 20 November

1995 trace had a much longer mean think time than the others. We believe this fact is due

to the timing of this particular trace, which covered the American Thanksgiving holiday in

late November. The University of California observes this holiday as a four-day weekend,

which could conceivably account for some of the long idle times. The CDFs for the user

think time distributions for all four traces is given by Figure A-5.

19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995

Mean 2.9 2.8 3.2 3.1

Median 1 1 1 1

Table A-7. Mean and Median Number of Files Per Document, .Tthresh 1 sec=

Tthresh Tthresh 1 sec=

Tthresh

Figure A-4. Cumulative Distribution Functions of Document Length in Files, 19
September 1995. Curves correspond to varying values of in seconds.Tthresh

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

C
D

F

Files per Document

T
thresh

 = 0.1
T

thresh
 = 0.2

T
thresh

 = 0.5
T

thresh
 = 1.0

T
thresh

 = 2.0
T

thresh
 = 5.0

T
thresh

 = 10.0
T

thresh
 = 20.0

T
thresh

 = 50.0

Tthresh

T T Tthresh>,

126

A.5.6 Consecutive Document Retrievals

The current design of many Web document archives is such that users will frequently

access documents from the same server in succession. As we saw in our discussion of var-

ious virtual circuit management policies in Chapter 6, this locality of TCP connections

may be a significant influence on network performance. Table A-9 summarizes the number

of consecutive document retrievals from HTTP servers during our network traces. By con-

trast, [Catledge95] noted that users accessed an average of ten consecutive pages per

server, considerably more than the average of four to five document retrievals we

observed. We believe that the difference is attributable to the interaction between user

browsing strategies and client caching in Web browsers. Users tend to use a browsing strat-

egy that has been described as “spoke and hub”, which involves frequent backtracking to

already-visited pages. In browsers that implement client-side caching, revisited pages will

not generate any network traffic (and thus would not appear in a network trace), but they

19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995

Number 1678 1995 1092 5692

Maximum
Time

86395 80681 65914 271309

Mean Time 1313 854 837 1915.84

Median Time 15 16 16 14

Table A-8. User Think Times in Seconds.

Figure A-5. Cumulative Distribution Functions of User Think Times.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

C
D

F

User Think Time (seconds)

19 September 1995
11 October 1995

1 November 1995
20 November 1995

127

would be counted in a client-side event trace. Thus, we would expect our consecutive doc-

ument retrieval count to be somewhat lower than the corresponding figure from a client

trace by about half, as we observed.

In Figure A-10, we show the CDF for the consecutive document retrievals distributions

from our traces. As can be seen, users tend to switch between servers fairly frequently (the

median number of consecutive documents retrieved is usually two). However, we noted

cases in which visits to Web servers lasted for tens of consecutive documents.

A.5.7 Server Selection

The server selection distribution characterizes the relative popularity of Web servers. We

computed the number of times that any given Web server was used for a set of one or more

consecutive document retrievals. In Table A-11, we summarize the ten most popular serv-

19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995

Number 253 306 171 873

Maximum
Documents

37 54 37 112

Mean Docu-
ments

4.1 4.3 4.2 4.4

Median Docu-
ments

2 2 3 2

Table A-9. Consecutive Document Retrievals Per Server Access.

Table A-10. Cumulative Distribution Functions for Consecutive Document Retrievals.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

C
D

F

Consecutive Documents Retrieved

19 September 1995
11 October 1995

1 November 1995
20 November 1995

128

ers for consecutive document retrievals during the 19 September 1995 trace, out of a total

of 136 servers accessed as the start of 253 strings of consecutive document retrievals.

By this metric, the most-visited server in this trace (indeed, for all four traces) was the local

departmental Web server. Among other items of interest, it contains homepages for the

vast majority of the users of the machines attached to the network being traced, as well as

the startup document for many users. We note that four of the top ten servers were located

on-site.

Given these characteristics, particularly the fact that so many of the servers accessed were

local to the tracing site, we believe that we have insufficient information to properly char-

acterize this aspect of our model. We have chosen instead to approximate the server selec-

tion distribution using a Zipf’s Law distribution. Zipf’s Law is a discrete, heavy-tailed

distribution that states that the probability of selecting the most popular item in a set is

proportional to . Originally, it was used to describe the frequency of words in texts, as

well as other human-related phenomena [Zipf49]. More recently, this distribution has been

applied to the access frequency of Web documents [Crovella96, Arlitt96]. It would seem

reasonable to apply Zipf’s Law, or some other heavy-tailed distribution, to the access pat-

terns of servers as well, but confirmation of this assertion requires a larger data sample than

we have available.

Rank Frequency Type

1 43 Local

2 11 Local

3 8 Remote

4 7 Remote

5 6 Local

6 6 Remote

7 6 Remote

8 6 Local

9 5 Remote

10 5 Remote

Table A-11. Top Ten Servers Observed, 19 September 1995. The frequency column
shows the number of times any given server was accessed as the start of a stream of
consecutive document retrievals. The type of a server reflects whether it is located

locally on-site or not.

ith

1 i⁄

129

We note here several difficulties in attempting to measure visits to Web servers from IP-

layer packet traces. The first problem is that IP-layer packet traces do not reveal the exact

hostname originally used to access documents, but only the IP address of the server. Host-

names can only be obtained by performing queries to nameservers, which will return the

canonical names of hosts, but not their aliases. For example, it would be very difficult to

determine that the machine whose canonical name is kohler.CS.Berkeley.EDU is

frequently accessed as http.CS.Berkeley.EDU or www.CS.Berkeley.EDU.

Another, related problem is that, in the case that a hostname maps to multiple IP addresses,

it may be difficult to associate accesses to these various IP addresses with a single name.

This particular situation may arise in the case of replicated HTTP servers, which rely on

randomization in the Domain Name System to spread accesses to a single Web server

across multiple machines, as described in [Katz94].

A.6 Model Representation

When choosing a representation for this traffic model, there were two basic approaches we

considered. One was to attempt to fit the observed data to probability distributions that are

easily described analytically. A simple analytic representation has the advantages of being

compact and (perhaps) easier to use. This approach was discussed in [Paxson94a]. How-

ever, in circumstances where a data set cannot be described by a well-known distribution

(such as the bimodal request size distributions discussed in Section A.5.2), this technique

cannot easily be used.

The alternative was to represent probability distributions by their CDFs, and to use the

inverse transformation method (for example, as described in [Jain91] and applied in

[Danzig91]). While requiring more storage and perhaps being slower to generate random

values, this approach does have the virtue of being able to represent arbitrary probability

distributions.

For two reasons, we chose to maintain the CDF representations for most of our probability

distributions. (However, the Zipf’s Law substitute to the server selection distribution was

calculated analytically.) The first reason was the ability to represent arbitrary distributions.

130

A more pragmatic reason was that the tcplib distributions from [Danzig91] already used

this representation, and we had already implemented the mechanisms to generate random

values using the inverse transform method. We based our distributions on the traffic gath-

ered in the 19 September 1995 trace.

The INSANE network simulator, initially described in Chapter 3, uses this model to mimic

both the activity of HTTP clients and that of HTTP servers. The behavior of a simple Web

browser is illustrated via the pseudo-code in Figure A-6; an algorithm for simulating a

single-threaded Web server is shown in Figure A-7. The simulation of more complex

HTTP applications, such as Web browsers capable of multiple, concurrent retrievals, or

multi-threaded Web servers, would be similar.

We reiterate that INSANE also models the TCP congestion and flow control mechanisms

of TCP, and that any meaningful Internet simulation must account for their effects.

while (!done) {
 /* select server and number of documents to retrieve */
 /* from that server */
 server = ServerSelection();
 numdocuments = ConsecutiveDocumentRetrievals();

 /* retrieve documents in succession */
 while (numdocuments) {

 /* retrieval for document */
 numfiles = DocumentLength();
 while (numfiles) {
 requestLength = Request();
 send(requestLength);
 reply = receive();
 numfiles--;
 }

 /* wait for user to think */
 wait(UserThinkTime());
 numdocuments--;
 }
}

Figure A-6. Pseudo-Code for a Simple HTTP Client.

131

A.7 Conclusions

We have constructed an empirical model of network traffic produced by the HyperText

Transfer Protocol used by World Wide Web applications. This model consists of a number

of probability distributions determined by analysis of actual HTTP conversations. From

packet traces, we have built up higher-layer of communication patterns, from individual

HTTP retrievals to Web pages to groups of pages. This approach gives a sufficient level of

detail to serve as a component of a workload generator for a packet-level simulation of an

IP internetwork being used to carry Web traffic.

Our characterization of Web-generated network traffic has shown that HTTP requests

exhibit a bimodal distribution, and that (as revealed in prior studies) the sizes of HTTP

replies have a heavy-tailed distribution. We have shown that a simple heuristic can be used

to separate HTTP transfers into different Web pages. We have characterized some aspects

of user Web page selection in terms of locality of consecutive documents referenced.

Where possible, we have compared the results of our measurements and analysis to other

Web measurement studies and found them consistent with those prior results.

A.8 Future Work

There are, of course, areas where this model can be refined; we list several as topics for

possible future work. We feel that the Zipf’s Law substitute to the server selection distri-

bution could be replaced with an empirical distribution, given an adequately-long trace of

network data. It would also be desirable to investigate any correlations between the differ-

while (!done) {

 /* Get request from client */
 request = receive();

 /* Figure out length of reply */
 replyLength = Reply();

 send(replyLength);
}

Figure A-7. Pseudo-code for a Simple HTTP Server.

132

ent components of our model (for example, there may be a correlation between the popu-

larity of a given server and the number of consecutive documents fetched from it).

The constantly-changing nature of the Web calls for updates to this model to track trends

over time. The growth of Web traffic may affect the nature of documents and Web-brows-

ing behavior. New protocol developments will force the use of new measurement and anal-

ysis methodologies.7 Increasing use of new Web features such as Java will change the

profile of files and documents being accessed.

Finally, the conversion of our empirical distributions to closed-form analytic expressions

would aid in making the models adaptable to the data and workload found for different

types of user communities and document archives.

7. In fact, performing new traffic measurements with current-day Web traffic requires more advanced anal-
ysis techniques than we present here, due to early support for persistent-connection HTTP on the part of
some Web browsers and servers. For example, recent versions of the Netscape Navigator browser
[Netscape96] and the Apache server [Apache96] support this feature.

133

B An Empirical Model of Internet
Video

We present a model of Internet video traffic sent by the popular applications vic and vgw.

The model is based on a traffic trace taken during late 1995 at the University of California

at Berkeley. It captures the behavior of a vic/vgw source during the two different modes

of operation (conditional replenishment and background updates) encountered during

video transmission. We present both the model and the empirical distributions for the var-

ious quantities making up the model. Finally we show how it can be used to generate a

stream of packets for a network simulation, such as INSANE.

B.1 Introduction

The popular video tool vic [McCanne95, McCanne96b] uses an encoding scheme, known

as Intra-H.261, designed for the lossy network environment of the Internet and its Multi-

cast Backbone (MBONE) virtual network [Macedonia94]. To provide resilience against

network losses, this scheme encodes and transmits only intraframe-coded blocks, thus

there are no temporal dependencies between block updates. Each block is encoded using

the H.261 video coding standard.

Instead of performing inter-frame compression (as with video coding schemes such as

MPEG), vic uses a scheme known as conditional replenishment to select blocks to be

transmitted. Only blocks which change by more than a certain threshold amount (for exam-

ple, due to motion in the video image) are transmitted. In the absence of motion, blocks not

experiencing motion are updated less frequently, so that all receivers eventually receive a

complete image.

134

vic performs open-loop rate control on a per-packet basis. After it sends each packet, the

transmitter “sleeps” for a certain amount of time determined by the rate control algorithm

and the rate settings specified by the user (bit rate and frame rate).

One problem with multicasting in the Internet environment is the heterogeneous nature of

the various networks and hosts. The different capabilities (especially in terms of network

bandwidth) can make it difficult to select a source bit rate that delivers an acceptable image

quality to all parties. To address this problem (and others), an application-level video gate-

way vgw [Amir95b, Amir96] has been developed to convert between encoding formats

and bit rates.1 Thus, a multicast source can send a high bit rate video stream, which can

then be transcoded and rate-limited by vgw to a lower-bit rate stream more suitable for

low-bandwidth environments. vgw uses the same coding and rate control algorithms as

vic.

vic and vgw are most visibly used in the Internet MBONE for the purpose of transmitting

live video of interesting sessions to the Internet community. Past examples have included

portions of Internet Engineering Task Force (IETF) meetings, portions of relevant confer-

ences such as ACM SIGCOMM, and various seminar series. Combined with an Internet

audio tool (vat) and a shared whiteboard (wb), these tools can be used to extend the audi-

ence of a presentation far beyond a local site.

In the network simulations required by our evaluation of IP-over-ATM policies, we wanted

to include some instances of video applications, both to analyze their performance and

their effects on other applications. To fill this need, we created a synthetic traffic source

that mimics the operation of vic (or vgw).

Section B.2 describes some related and prior work. In Section B.3, we describe our meth-

odology for capturing a sample of video traffic. Section B.4 describes our traffic model,

and shows how we derived the model’s empirical probability from our network measure-

1. This software has since been renamed rtpgw, reflecting the fact that it can be used as an application-
level gateway for different types of RTP sessions, not just video.

135

ments. We discuss the representation and usage of our model in Section B.5. Finally, in

Section B.6, we make some concluding remarks.

B.2 Related Work

There are many examples of synthetic video workloads based on empirical measurements

and observations of real traffic. Perhaps the best-known and most-often-used such model

is the “Star Wars” workload of [Garrett93], which consists of a trace of the video frame

sizes from a popular science-fiction motion picture, encoded using a VBR video coder per-

forming intraframe compression.

Several well-known Internet-based models, based on traces of actual traffic, exist. For

example, tcplib [Danzig91] can be used to mimic the traffic sent by a variety of

common Internet applications, circa 1991. The model described in Appendix A provides a

similar characterization for World Wide Web activity.

B.3 Methodology

We wanted to base our model on observed network traffic. To do this, we needed a trace

of packets (with timing) sent during an actual MBONE multicast. We used the tcpdump

[Jacobson95] utility to capture all the packet headers from vgw during a multicast from the

Berkeley Multimedia Seminar Series on 1 November 1995. The session used vgw to

transcode a 1 Mbps motion JPEG-encoded video stream into Intra-H.261 at a lower bit rate

for transmission over the MBONE. The lower-rate MBONE multicast session we mea-

sured had a target bit rate of 128 Kbps and a target frame rate of 8 frames per second.

The session we traced lasted from 12:14 PM to 1:46 PM (local time), a total of one hour,

32 minutes. During this time the vgw process sent 69,135 packets, containing a total of

38.8 MB of data (this figure includes only UDP payload, not packet headers). The average

bit rate, over the entire trace, was 56 Kbps.

B.4 Model

We model the stream of video packets using a two-state model, as shown in Figure B-1.

Each state represents the modes of operation when vgw outputs conditional replenishment

and background updates, respectively. We note that this two-state model is rather simplis-

136

tic—a slightly more accurate model would account for the fact that conditional replenish-

ment and background updates can, in fact, take place concurrently. Such a model could be

captured either by adding more states to the existing model or by using a superposition of

two packet arrival processes (one for each type of update). However, our simplified model

has the virtue of being easy to derive from our trace data.

The length of time the application transmits in each state is described in terms of the

number of consecutive packets sent from each visit to that state. We name these two dis-

tributions and , respectively.2

Within each state, the source sends UDP packets with sizes drawn from the and

 distributions, as appropriate. We note that selecting the packet sizes in each state

is sufficient to completely describe the source’s behavior while in that state, due to the rate

control algorithm employed by vic and vgw. When doing conditional replenishment, a

packet of size bytes is followed by a gap of seconds, where is in bytes and is

the target bit rate in bits per second.

In the case of background updates, any packet (regardless of size) is followed by a gap of

 seconds, where is the target frame rate in frames per second. This gap size ensures

an update of at least one block per frame time. We note that each update block is much

smaller than a complete video frame.

We computed the four probability distributions of our model, based on the packet sizes and

arrival times captured during the MBONE multicast described in Section B.3.

2. We chose this representation, rather than using transition probabilities, because it allows us to describe
two-state behavior other than a two-state Markov chain.

Figure B-1. Two-State Model of Video Source. The two states refer to two modes of
operation; packets transmitted from each state have different characteristics.

CR BG

packetsCR packetsBG

sizeCR

sizeBG

s
8s
BR
-------- s BR

1
FR
------- FR

137

B.4.1 Packet Classification

For each of the packets we captured, we recorded the UDP payload size and the length of

the gap separating that packet from the one following it. Figure B-2 shows a scatterplot of

a representative subset of the packets in our trace.

We observe that many of the packets appear to be loosely clustered into two groups. The

first lies along a line through the origin, with a slope corresponding to approximately 61

microseconds per byte. These packets are conditional replenishment updates. The slope of

the line corresponds to the target bit rate, 128 Kbps.

The other major grouping of packets lies around the horizontal line with a Y intercept at

0.125 seconds. These packets are background updates; 0.125 seconds is the reciprocal of

the target frame rate (eight frames per second).

Packets lying far away from either line can be explained by a variety of phenomena, includ-

ing queueing or media access delays, packet loss, or operating system scheduling granu-

larity. For many of these reasons, we note that it is important to capture traffic close to the

source. Our traces were captured on the same subnet as the workstation running the vgw

transcoder. Transitions between the BG and CR states can also cause these outlying points,

due to differences between our model and the vic/vgw implementation.

0

0.1

0.2

0.3

0.4

0.5

0 500 1000

In
te

r-
pa

ck
et

 G
ap

 (
Se

co
nd

s)

UDP Payload Size (Bytes)
Figure B-2. Scatterplot of 20,000 Packets. This plot shows the packet payload size and

following interpacket gap.

138

We used a graphical method to classify all the packets in the trace as being either condi-

tional replenishment or background update packets. We classified each point (and associ-

ated packet) according to which of the two aforementioned clusters of packets was closer.

This procedure gave us the ability to reconstruct, at least partially, the original applica-

tion’s behavior, even when the exact state of the source’s encoder was unknown.3

B.4.2 Packet Sizes

Once we were able to classify packets into the two classes (CR and BG), we could examine

the characteristics according to their types. The first natural measurement was the distribu-

tion of packet sizes.

Conditional replenishment packets were, in general, larger than background updates. CR

packets were an average of 758 bytes long, and accounted for 27.9 MB of the bytes

recorded (72% of the total). By comparison, the background updates, which made up 10.9

MB of the trace bytes, had an average length of 338 bytes. In Figure B-3 we show the

cumulative distribution functions of the and packet size distributions.

Clearly the two have very different distributions, and need to be modeled separately (we

note that they depend very much on the threshold value used to detect changes in blocks).

B.4.3 State Times

By counting the number of consecutive packets in each of the two states, we computed the

distributions of the state times (and). They give some measure of

how long the video source remained in either the CR or BG states.

The conditional replenishment states lasted longer in general than the background updates

states (on average, 5.03 packets, vs. 4.43). However, the longest background states were

much longer (462 consecutive packets, as opposed to 37), due to extremely long times

without any motion in the video image. Figure B-4 shows the cumulative distribution of

the state times.

3. We actually collected several sessions’ packet headers, when vgw was still under development and
undergoing debugging. By viewing scatterplots similar to Figure B-2, the author of vgw was able to iden-
tify the effects of bugs in old versions of vgw [Amir95a].

sizeCR sizeBG

packetsCR packetsBG

139

B.5 Model Representation

As with our HTTP model, we chose to represent the various probability distributions by

storing their CDFs and using the inverse transform method to compute samples from these

distributions.

0

0.2

0.4

0.6

0.8

1

0 500 1000

C
D

F

Packet Size (bytes)

Background Updates
Conditional Replenishment

Figure B-3. Cumulative Distribution Functions of Packet Sizes.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

C
D

F

State Time (number of packets)

Background Updates
Conditional Relenishment

Figure B-4. Cumulative Distribution Functions of State Times.

140

We implemented a simulated video source based on this model as a part of the INSANE

network simulator. It transmits packets according to this model for a given target bit rate

and frame rate.4 The pseudo-code for this source is shown in Figure B-5.

In our simulations, the sink of video data was a passive receiver; it only recorded statistics

on received data (such as loss and delay). In reality, the receiver would also be sending con-

trol and membership information to the other members of the multicast group. A charac-

4. We believe this model to be reasonably accurate and useful, as long as the target bit rate and frame rate
used by the synthetic traffic source are close to those of the original source. In all the simulations we did, we
used the original bit rate of 128 Kbps and the original frame rate of 8 frames per second.

/* initialize */
state = CR;
packets = PacketsCR();

while (!done) {

 /* compute next packet and inter-packet gap */
 if (state == CR) {
 size = SizeCR();
 delay = size * 8 / BR;
 }
 else {
 size = SizeBG();
 delay = 1 / FR;
 }

 /* switch states if necessary */
 if (--packets) {
 if (state == CR) {
 state = BG;
 packets = PacketsBG();
 }
 else {
 state = CR;
 packets = PacketsCR();
 }
 }

 /* send packet and wait for inter-packet gap */
 Send(size);
 Sleep(delay);
}

Figure B-5. Pseudo-code for a Simple Internet Video Source.

141

terization of this traffic, which is small in volume compared to the actual video data, is

beyond the scope of this study.

Finally, we note that although we captured data from a multicast session, INSANE (as cur-

rently implemented) only supports unicast video transmission and data forwarding. As the

original session had only one sender, we believe that the model is still applicable to our

simulation scenarios.

B.6 Conclusions

We have derived an empirical model of Intra-H.261 coded video, as sent by the coder used

by the MBONE video tools vic and vgw. This model is based on a traffic trace taken

during a live MBONE multicast in late 1995. We believe that our model is simple enough

to be easily used and that it captures enough interesting, meaningful properties of the traffic

stream to be used in network simulations.

It would be useful to test this model against a variety of different types of video data, pro-

duced by this same application. One fairly simple study would be to examine different

video contents and their effect on the output stream from the codec. For example, a “talking

heads” seminar multicast would very likely generate very different traffic from an “action

movie”. Even though the two could be encoded using the same coder, with the same

parameters, different amounts of motion would affect the use of conditional replenishment,

and hence produce different bit rates. It would also be helpful to gather data produced

streams with different thresholds, frame rates, and bit rates, to provide both a validation of

this model and a variety of workloads.

Another possible area of future work would to be to investigate possible short-term or

long-term correlations in the video stream.

142

Bibliography

[Almquist92] Philip Almquist. Type of Service in the Internet Protocol Suite.
Internet Request for Comments 1349, July 1992.

[Amir95a] Elan Amir. Personal communication, December 1995.

[Amir95b] Elan Amir, Steve McCanne, and Hui Zhang. “An application
level video gateway.” In Proceedings of ACM Multimedia 95,
San Francisco, CA, November 1995.

[Amir96] Elan Amir and Steve McCanne. rtpgw software, 1996. This
software is available at ftp://daedalus.cs.berkeley.edu/pub/
rtpgw/.

[Apache96] The Apache Group. Apache software, 1996. This software is
available at http://www.apache.org.

[Arlitt96] Martin F. Arlitt and Carey L. Williamson. “Web server
workload characterization: The search for invariants.” In
Proceedings of the ACM SIGMETRICS Conference on
Measurement & Modeling of Computer Systems, pages 126–
137, Philadelphia, PA, May 1996.

[ATM Forum95] ATM Forum. ATM User-Network Interface Specification,
Version 3.1. PTR Prentice Hall, 1995.

[Banerjea96] Anindo Banerjea, Domenico Ferrari, Bruce A. Mah, Mark
Moran, Dinesh C. Verma, and Hui Zhang. “The Tenet Real-
Time Protocol Suite: Design, implementation, and
experiences.” IEEE/ACM Transactions on Networking, 4(1):1–
10, February 1996.

[Berners-Lee95] Tim Berners-Lee and Daniel W. Connolly. Hypertext Markup
Language – 2.0. Internet Request for Comments 1886,
November 1995.

143

[Berners-Lee96] Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk Nielsen.
Hypertext Transfer Protocol – HTTP/1.0. Internet Request for
Comments 1945, May 1996.

[Biagioni93] Eduardo Biagioni, Eric Cooper, and Robert Sansom. “Designing
a practical ATM LAN.” IEEE Network, pages 32–39, March
1993.

[Bohn94] Roger Bohn, Hans-Werner Braun, Kimberly C. Claffy, and
Stephen Wolff. “Mitigating the coming Internet crunch:
Multiple service levels via precedence.” Journal on High Speed
Networks, 1994.

[Bray96] Tim Bray. “Measuring the Web.” In Proceedings of the Fifth
International World Wide Web Conference, Paris, France, May
1996.

[Cáceres91] Ramón Cáceres, Peter B. Danzig, Sugih Jamin, and Danny
Mitzel. “Characteristics of wide-area TCP/IP conversations.” In
Proceedings of ACM SIGCOMM ’91, Zurich, Switzerland,
September 1991.

[Cáceres92] Ramón Cáceres. Multiplexing Traffic at the Entrance to Wide-
Area Networks. PhD thesis, Computer Science Division,
University of California at Berkeley, December 1992.

[Cáceres93] Ramón Cáceres. “Multiplexing data traffic over wide-area cell
networks.” Unpublished technical report, Matsushita
Information Technical Laboratory, Princeton, NJ, January 1993.

[Catledge95] Lara D. Catledge and James E. Pitkow. “Characterizing
browsing strategies in the World-Wide Web.” In Proceedings of
the Third International World Wide Web Conference,
Darmstadt, Germany, April 1995.

[Claffy94] Kimberly C. Claffy. Internet Traffic Characterization. PhD
thesis, University of California, San Diego, 1994.

[Clark92] David D. Clark, Scott Shenker, and Lixia Zhang. “Supporting
real-time applications in an integrated services packet network:
Architecture and mechanism.” In Proceedings of ACM
SIGCOMM ’92, pages 14–26, Baltimore, MD, August 1992.

[Cole96] Robert G. Cole, David H. Shur, and Curtis Villamizar. IP over
ATM: A Framework Document. Internet Request for Comments
1932, April 1996.

144

[Crovella96] Mark E. Crovella and Azer Bestavros. “Self-similarity in World
Wide Web traffic: Evidence and possible causes.” In
Proceedings of the ACM SIGMETRICS Conference on
Measurement & Modeling of Computer Systems, pages 160–
169, Philadelphia, PA, May 1996.

[Cunha95] Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella.
“Characteristics of WWW client-based traces.” Technical
Report BU-CS-95-010, Computer Science Department, Boston
University, July 1995.

[Danzig91] Peter B. Danzig and Sugih Jamin. “tcplib: A library of TCP
internetwork traffic characteristics.” Technical Report USC-CS-
91-495, Computer Science Department, University of Southern
California, Los Angeles, CA, 1991.

[Deering96] Steven E. Deering and Robert M. Hinden. Internet Protocol,
Version 6 (IPv6) Specification. Internet Request for Comments
1883, January 1996.

[Ferrari89] Domenico Ferrari. “Real-time communication in packet
switching wide area networks.” Technical Report TR-89-022,
International Computer Science Institute, Berkeley, CA, May
1989.

[Ferrari90] Domenico Ferrari. “Client requirements for real-time
communication services.” IEEE Communications Magazine,
28(11):65–72, November 1990.

[Ferrari94] Domenico Ferrari, Anindo Banerjea, and Hui Zhang. “Network
support for multimedia – a discussion of the Tenet approach.”
Computer Networks and ISDN Systems, 26:1267–1280, 1994.

[Fielding96] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk
Nielsen, and Tim Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. Internet Draft draft-ietf-http-v1.1-spec-07, August
1996.

[Fraser92] A. G. Fraser, C. Kalmanek, A. Kaplan, W. Marshall, and
R. Restrick. “Xunet 2: A nationwide testbed in high-speed
networking.” In Proceedings of IEEE INFOCOM ’92, Firenze,
Italy, May 1992.

[Garrett93] Mark W. Garrett. Contributions Toward Real-Time Services on
Packet-Switched Networks. PhD thesis, Columbia University,
New York, NY, May 1993.

145

[Gibbons85] Jean Dickinson Gibbons. Nonparametric Methods for
Quantitative Analysis. American Series in Mathematical and
Management Sciences. American Sciences Press, Inc.,
Columbus, OH, second edition, 1985.

[Gupta95a] Amit Gupta. Multi-party real-time communication in computer
networks. PhD dissertation, University of California at
Berkeley, December 1995.

[Gupta95b] Amit Gupta, Wingwai Howe, Mark Moran, and Quyen Nguyen.
“Resource sharing for multi-party real-time communication.” In
Proceedings of INFOCOM ’95, Boston, MA, April 1995.

[Handley96] Mark Handley. “Re: Port ranges assigned to video and audio.”
Posting to rem-conf mailing list, message
19388.837175676@cs.ucl.ac.uk, July 1996.

[Heinanen93] Juha Heinanen. Multiprotocol Encapsulation over ATM
Adaptation Layer 5. Internet Request for Comments 1483, July
1993.

[ION96] “Internetworking over NBMA working group charter,” May
1996. This document is available at ftp://ftp.nexen.com/pub/ion/
ion-charter.txt.

[Ipsilon96] Ipsilon Networks. IP Switching: The Intelligence of Routing,
The Performance of Switching, February 1996.

[Jacobson88] Van Jacobson. “Congestion avoidance and control.” In
Proceedings of ACM SIGCOMM ’88, Stanford, CA, August
1988.

[Jacobson95] Van Jacobson, Craig Leres, and Steven McCanne. tcpdump
software, Version 3.0.2, 1995. This software is available at ftp:/
/ftp.ee.lbl.gov/tcpdump.tar.Z.

[Jacobson96] Van Jacobson and Steve McCanne. vat software, 1996. This
software is available at ftp://ftp.ee.lbl.gov/conferencing/vat/.

[Jain91] Raj Jain. The Art of Computer Systems Performance Analysis.
John Wiley & Sons, Inc., New York, NY, 1991.

[Johnston95] William E. Johnston. “BAGNet: A high speed, metropolitan
area, IP over ATM network testbed.” In Proceedings of IEEE
Compcon 1995, San Francisco, CA, March 1995.

146

[Kalmanek90] C. R. Kalmanek, H. Kanakia, and S. Keshav. “Rate controlled
servers for very high-speed networks.” In Proceedings of
Globecomm ’90, San Diego, CA, December 1990.

[Kantor86] Brian Kantor and Phil Lapsley. Network News Transfer
Protocol. Internet Request for Comments 977, February 1986.

[Kantor91] Brian Kantor. BSD Rlogin. Internet Request for Comments
1258, December 1991.

[Katz94] Eric Dean Katz, Michelle Butler, and Robert McGrath. “A
scalable HTTP server: The NCSA prototype.” In Proceedings of
the First International WWW Conference, Geneva, Switzerland,
May 1994.

[Keshav94] S. Keshav. “Experiences with large videoconferences on
XUNET II.” In Proceedings of INET ’94, Prague, Czech
Republic, June 1994.

[LANE95] ATM Forum, Foster City, CA. LAN Emulation Over ATM,
Version 1.0, January 1995.

[Laubach94] Mark Laubach. Classical IP and ARP over ATM. Internet
Request for Comments 1577, January 1994.

[Luciani96] James V. Luciani, Dave Katz, David Piscitello, and Bruce Cole.
NBMA Next Hop Resolution Protocol (NHRP). Internet Draft
draft-ietf-rolc-nhrp-10, October 1996.

[Lund95] Carsten Lund, Steven Phillips, and Nick Reingold. “Adaptive
holding policies for IP over ATM networks.” In Proceedings of
IEEE INFOCOM ’95, pages 80–87, Boston, MA, April 1995.

[Macedonia94] Michael R. Macedonia and Donald P. Brutzman. “Mbone
provides audio and video across the Internet.” IEEE Computer,
pages 30–36, April 1994.

[Mah93] Bruce A. Mah. “A mechanism for the administration of real-
time channels.” Masters report, University of California at
Berkeley, April 1993.

[Mah94a] Bruce A. Mah. “Enhancements to the XUNET IP service.”
unpublished technical memorandum, AT&T Bell Laboratories,
Murray Hill, NJ, July 1994.

147

[Mah94b] Bruce A. Mah. “Measurements and observations of IP multicast
traffic.” Technical Report CSD-94-858, University of California
at Berkeley, December 1994.

[Mah97] Bruce A. Mah. “An empirical model of HTTP network traffic.”
In Proceedings of IEEE INFOCOM ’97, Kobe, Japan, April
1997. To appear.

[Maher95] Maryann Perez Maher, Fong-Ching Liaw, Allisamn Mankin,
Eric Hoffman, Dan Grossman, and Andrew G. Malis. ATM
Signalling Support for IP over ATM. Internet Request for
Comments 1755, February 1995.

[McCanne95] Steven McCanne and Van Jacobson. “vic: A flexible framework
for packet video.” In Proceedings of ACM Multimedia ’95,
pages 522–522, San Francisco, CA, November 1995.

[McCanne96a] Steve McCanne and Sally Floyd. ns software, 1996. This
software is available at http://www-nrg.ee.lbl.gov/ns/.

[McCanne96b] Steve McCanne and Van Jacobson. vic software, 1996. This
software is available at ftp://ftp.ee.lbl.gov/conferencing/vic/.

[McKusick96] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and
John S. Quarterman. The Design and Implementation of the 4.4
BSD Operating System. Addison-Wesley Publishing Company,
Reading, MA, 1996.

[Mogul95] Jeffrey C. Mogul. “The case for persistent-connection HTTP.”
In Proceedings of ACM SIGCOMM ’95, pages 299–313,
Cambridge, MA, August 1995.

[Mosaic95] National Center for Supercomputing Applications. NCSA
Mosaic software, July 1995. This software is available at http://
www.ncsa.uiuc.edu/SDG/Software/XMosaic/.

[Netscape96] Netscape Communications Corporation. Netscape Navigator
software, 1996. This software is available at http://
home.netscape.com/.

[Newman96a] Peter Newman, W. L. Edwards, Robert M. Hinden, Eric
Hoffman, Font Ching Liaw, Tom Lyon, and Greg Minshall.
Ipsilon Flow Management Protocol Specification for IPv4
Version 1.0. Internet Request for Comments 1953, May 1996.

148

[Newman96b] Peter Newman, W. L. Edwards, Robert M. Hinden, Eric
Hoffman, Font Ching Liaw, Tom Lyon, and Greg Minshall.
Transmission of Flow Labelled IPv4 on ATM Data Links.
Internet Request for Comments 1954, May 1996.

[Newman96c] Peter Newman, Tom Lyon, and Greg Minshall. “Flow labelled
IP: A connectionless approach to ATM.” In Proceedings of
IEEE INFOCOM ’96, pages 1251–1260, San Francisco, CA,
March 1996.

[Ousterhout94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley
Publishing Company, Reading, MA, 1994.

[Padmanabhan94] Venkata N. Padmanabhan and Jeffrey C. Mogul. “Improving
HTTP latency.” In Proceedings of the Second International
World Wide Web Conference, Chicago, IL, October 1994.

[Parulkar95] Guru Parulkar, Douglas C. Schmidt, and Jonathan Turner. “IP/
ATM: A strategy for integrating IP with ATM.” In Proceedings
of ACM SIGCOMM ’95, pages 49–59, Cambridge, MA, August
1995.

[Paxson91] Vern Paxson. “Measurements of wide area TCP conversations.”
Masters report, University of California at Berkeley, May 1991.

[Paxson94a] Vern Paxson. “Emprically derived analytic models of wide-area
TCP connections.” IEEE/ACM Transactions on Networking,
2(4):316–336, August 1994.

[Paxson94b] Vern Paxson. “Growth trends in wide-area TCP connections.”
IEEE Network, 8(4):8–17, July 1994.

[Postel80] Jon Postel. User Datagram Protocol. Internet Request for
Comments 768, August 1980.

[Postel81a] Jon Postel. Internet Protocol. Internet Request for Comments
791, September 1981.

[Postel81b] Jon Postel. Transmission Control Protocol. Internet Request for
Comments 793, September 1981.

[Postel82] Jonathan B. Postel. Simple Mail Transfer Protocol. Internet
Request for Comments 821, August 1982.

[Postel83] Jon Postel and Joyce Reynolds. Telnet Protocol Specification.
Internet Request for Comments 854, May 1983.

149

[Postel85] Jon Postel and Joyce Reynolds. File Transfer Protocol (FTP).
Internet Request for Comments 959, October 1985.

[Ptolemy96] Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley. Ptolemy software, April
1996. This software is available at http://
ptolemy.eecs.berkeley.edu/.

[Rekhter96] Yakov Rekhter, Bruce Davie, Dave Katz, Eric Rosen, and
George Swallow. Tag Switching Architecture Overview.
Internet Draft draft-rfced-info-rekhter-00, September 1996.

[Reynolds94] Joyce K. Reynolds and Jon Postel. Assigned Numbers. Internet
Request for Comments 1700, October 1994.

[Romanow94] Allyn Romanow and Sally Floyd. “Dynamics of TCP traffic
over ATM networks.” In Proceedings of ACM SIGCOMM ’94,
pages 79–88, London, August 1994.

[Sandberg85] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh,
and Bob Lyon. “Design and implementation of the Sun Network
Filesystem.” In Proceedings of the USENIX Summer
Conference Proceedings, pages 119–130, Portland, OR, June
1985.

[Schmidt93] Andrew Schmidt and Roy Campbell. “Internet protocol traffic
analysis with applications for ATM switch design.” ACM
SIGCOMM Computer Communication Review, 23(2):39–52,
April 1993.

[Schulzrinne96] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and
Van Jacobson. RTP: A Transport Protocol for Real-Time
Applications. Internet Request for Comments 1889, January
1996.

[Shenker96] Scott Shenker, Craig Partridge, and Roch Guerin. Specification
of Guaranteed Quality of Service. Internet Draft draft-ietf-
intserv-guaranteed-svc-06, August 1996.

[Stevens94] W. Richard Stevens. TCP/IP Illustrated, Volume 1. Addison-
Wesley Publishing Company, Reading, MA, 1994.

[Stevens96] W. Richard Stevens. TCP/IP Illustrated, Volume 3. Addison-
Wesley Publishing Company, Reading, MA, 1996.

[Stroustrup91] Bjarne Stroustrup. The C++ Programming Langauge. Addison-
Wesley Publishing Company, 1991.

150

[Sun Microsystems88] Sun Microsystems. RPC: Remote Procedure Call, Protocol
Specification, Version 2. Internet Request for Comments 1057,
June 1988.

[Woodruff96] Allison Woodruff, Paul M. Aoki, Eric Brewer, Paul Gauthier,
and Lawrence A. Rowe. “An investigation of documents from
the World Wide Web.” In Proceedings of the Fifth International
World Wide Web Conference, Paris, France, May 1996.

[Wright95] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated,
Volume 2. Addison-Wesley Publishing Company, 1995.

[Wroclawski96] John Wroclawski. Specification of the Controlled-Load
Network Element Service. Internet Draft draft-ietf-intserv-ctrl-
load-svc-03, August 1996.

[Zhang93a] Hui Zhang and Domenico Ferrari. “Rate-controlled static-
priority queueing.” In Proceedings of IEEE INFOCOM ’93, San
Francisco, CA, 1993.

[Zhang93b] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and
Daniel Zappala. “RSVP: A new resource ReSerVation
Protocol.” IEEE Network, September 1993.

[Zipf49] George Kingsley Zipf. Human Behavior and the Principle of
Least Effort. Hafner Publishing Company, New York, NY,
1949.

