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Abstract

Quality of Service and Asynchronous Transfer Mode in IP Internetworks
by
Bruce Albert Mah
Doctor of Philosophy in Computer Science
University of Californiaat Berkeley

Professor Domenico Ferrari, Chair

The deployment of Asynchronous Transfer Mode (ATM) networksisarecent devel opment
in the field of computer communication. When we attempt to use these networks as a part
of the global Internet, running the Internet Protocol (1P), we see a number of differences
between the dataforwarding modelsof ATM (virtual circuits supporting performance guar-
antees) and | P (datagrams, usually best-effort). In our research, we have evaluated different
policiesfor IP-over-ATM networks to bridge the gaps between these two networks and to
make them function more efficiently together.

Thedifferencesbetween IPand ATM raisethreeissues. First isthe question of how Internet
applications can take advantage of ATM quality of servicefacilities, without support from
other portions of the Internet. A second issueisthat of determining which IP conversations
should be multiplexed onto asingle ATM virtual circuit. Last isthe problem of virtual cir-
cuit management, which determines when ATM connections should be established and
torn down.

We have examined different quality of service, multiplexing, and virtual circuit manage-
ment policies, and evaluated their rel ative merits from the standpoint of the performance of
typical Internet applications. Our evaluation used a simulation of alarge | P internetwork
with awide-area ATM backbone and a synthetic workload modeling the traffic generated
by common Internet applications. For this purpose, we implemented a new network simu-
lator, the Internet Simulated ATM Networking Environment (INSANE).



Our results show that the use of different scheduling algorithms and QOS parameters can
be used to express preference for certain applications, although some care must be taken to
avoid starvation effects. The use of jitter controlling schedulersin the ATM network can
be efficaciousin reducing packet lossin long TCP bulk transfers. We see that multiplexing
can improve application performance due to areduced need to set up ATM virtual circuits,
although interactions with some network service disciplines can negate these effects. Final-
ly, we show that caching idlevirtual circuitsfor reuseis, in general, beneficial for both net-
work and application performance.
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1 Introduction

1.1. Motivation

Thisresearch bringstogether two very different networking “worlds’. Oneisthat of Asyn-
chronous Transfer Mode (ATM) networks. This technology is designed to carry a wide
variety of audio, video, and data traffic, and is presently growing in popularity. Network
usersareturning to ATM asasolution for applicationsthat require high bandwidth or guar-

anteed performance.

The other world is that of the nearly-ubiquitous global Internet. The explosive growth of
the Internet, both in terms of its logical size and the amount of traffic it carries, is well-
known. More than a single network, it is a heterogeneous collection of networks incorpo-

rating a wide range of technologies from dial-up modems to high-speed fiber-optic links.

An important, practical problem isto make IP and ATM networks function together in an
efficient and effective manner, which draws on the strengths of both. However, this goal
raises several technical challenges, brought about by basic differences in the architectures

of these two types of networking systems.

There are three basic differences that create problems when we try to make these two dis-
similar types of networks interoperate. The first arises from the different data forwarding
models of IP (connectionless) versus that of ATM (connection-oriented). Because the
Internet has no connectionsin its network layer, ATM portions of the Internet need to infer

the appropriate times to establish and close connections.

Another difference is the types of quality of service support provided by the networks.
ATM alows users to specify the quality of service (for example, a minimum throughput

or amaximum delay) they desire from the network. An ATM service can guarantee per-

1



formance for all data sent on a connection, until the connection is closed. By contrast, the
Internet has no support for end-to-end quality of service; all packets are treated equally.
Although efforts are underway to provide differential treatment for different types of traf-
fic in the Internet, this support is not widespread, et alone ubiquitous.

A final differenceisthe nature of packets supported by the two networks. In ATM, packets
aresmall and fixed-size. A segmentation and reassembly protocol needsto be used in order
to support the larger, variable-sized packets that are normally assumed by the Internet pro-

tocol stack.

These differences motivate three critical design issues for the integration of IPand ATM,
issues that are the focus of this work. First, Internet applications should be able to take
advantage of the quality of service features of an ATM subnet, even though surrounding

portions of the Internet may not be able to provide such support.

Another issueisthat of multiplexing. Some efficient policy isrequired to select the packets
that shareagiven ATM virtua circuit. These packets could all belong to the same | P con-

versation, or parts of different ones.

Thefinal issuerelatesto the management of virtual circuits. Because | P has no connections
at its network layer, some set of policies and mechanisms are required to infer appropriate
timesfor ATM virtua circuits to be established and closed.

1.2. Dissertation Overview

In this dissertation, we investigate the effects of different policiesfor using Asynchronous
Transfer Mode (ATM) networks to carry packets for the Internet Protocol (IP). We focus
on evaluating alternatives for these policies with respect to the end-to-end performance

that they deliver to applications commonly seen on the Internet.

In Chapter 2, we present some background on both the IP and ATM protocol stacks. We
also provide an introduction to the three |P-over-ATM design issueswe investigated in this
study.



Chapter 3 discusses the methodology we used to evaluate different alternativesin I P-over-
ATM designs. Weinclude adescription of anew network simulator, the Internet Simulated
ATM Networking Environment (INSANE), and show how we used it to measure the per-
formance of several ssimulated Internet applications in a heterogeneous network of more

than a thousand hosts.

We present of the use of different IP-over-ATM quality of service policies in Chapter 4,
along with theimplications for end-to-end I nternet application performance. We examined
four different ATM service disciplines and experimented with avariety of policiesto use
these mechanisms for giving preference to different types of applications. We show that a
static priority scheme (if used carefully) can be effective providing differential treatment
to different Internet applications. The policing provided by performance-guaranteed ATM
services can prevent bulk transfers from monopolizing the network, however the subse-

guent benefits derived by other applications are uncertain.

In Chapter 5, we discuss the impact of three IP-over-ATM multiplexing policies. These
policies vary the granularity with which IP packets are mapped onto virtual circuitsin an
ATM network. We see that aggregating several 1P conversations onto a common virtual
circuit improves the performance of short transfers. Longer conversations may fare better
if carried by their own virtual circuits, although this result is dependent on the scheduling

policy used over the ATM network.

Chapter 6 shows the effects of different policies for managing virtual circuits in an IP-
over-ATM network. We look, in particular, at three different policies for setting up and
tearing down virtual circuits being used to carry Internet traffic. We show that the perfor-
mance of applications using switched virtual circuits can be improved by caching idle con-

nections for reuse by subsequent conversations.

Finally, in Chapter 7, we present our conclusions and some thoughts for futurework in this

area.

Our network simulations relied on having reasonably accurate models of the network

activity generated by common Internet applications. In two cases, we needed to develop



new models, because existing ones were either non-existent or not applicable. We discuss
thiswork in two appendices. In Appendix A, we present an empirical model of traffic gen-
erated by the HyperText Transport Protocol (HTTP), as used by World Wide Web appli-

cations.

Appendix B describes a similar model for Internet video traffic, based on a trace taken

from the MBONE video applications vic and vgw.



2 Background

Using IP and ATM together presents some interesting challenges because they differ in
fundamental ways, from their respective models of data forwarding (connectionless vs.
connection-oriented) to support for the preferential treatment of packets (no support vs. the
potential for hard guarantees). This chapter provides background information on these two
different types of networks, and some of the issues that are involved when attempting to

make them interoperate.

In Section 2.1, we present a brief background of the Internet Protocol. Asynchronous
Transfer Mode networks are described in Section 2.2. Section 2.3 describes some work in
the provision and use of quality of servicein packet-switching networks such as ATM. In
Section 2.4, we describe some current approaches to running IP over ATM networks. In
Section 2.5, we discuss some remaining, fundamental problems and show how they moti-
vatetheissuesthat arethe subjects of our research. Finally, in Section 2.6, we present some

design aternatives for solutions to these problems.

2.1 Internet Protocol

In the current Internet, the network layer protocol used for forwarding data across and
between subnets is the Internet Protocol (IP) [Postel81a). IP is a connectionless protocol;
packets (also referred to as datagrams) are sent and received independently of each other.
This approach allows a host to send packets to a destination without first needing to set up
state information in intermediate routers along the path to be taken by data.

IPisamost entirely independent of the technology used to transport packets. It makes few
assumptions about the nature of individual subnets used to forward data. IP packets can

traverse many subnets without either the senders or receivers being aware of the details or
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types of the networks encountered along the path between them. Although IP generally
does not deliberately drop (discard) packets, no attempt is made to provide reliability (in

other words, to guarantee that data sent will be correctly received).t

Internet applicationstypically do not use | P directly. Rather, they employ higher-layer pro-
tocols, which provide services more appropriate to the needs of the applications. A com-
monly-used transport protocol, layered on top of IP, is the Transport Control Protocol
(TCP) [Postel81b]. TCP providesreliable, in-order delivery of streams of bytes. It is con-
nection-oriented; thus the endpoints of a TCP conversation must handshake to establish
connection state before any data packets are sent. Because TCP isimplemented using IP's
unreliable datagram service, it uses acknowledgments, timeouts, and retransmissions to
ensure that datais correctly received by the destination. TCP also implements algorithms

for flow control and congestion control [Jacobson88].

The other transport protocol commonly used with IPisthe User Datagram Protocol (UDP)
[Postel80]. UDP furnishes a service very similar to that of “raw” IP; it provides the unre-
liable delivery of datagrams to user programs. Applications using UDP typically either
implement their own reliability protocol (for example, as done in Sun RPC [Sun
Microsystems38]) or do not require reliable transport of data (as in the case of typical
applications transporting audio and video).

TCP, UDP, and IP, together with other higher-layer protocols not discussed here, collec-
tively form the Internet protocol suite, pictured in Figure 2-1. Additional details on the

Internet protocol suite can be found in [Stevens94].

The Internet Engineering Task Forceis currently designing a successor to IP, known as IP
Version 6 or IPv6. IPv6 isanetwork-layer protocol which addressesthe primary limitations
of IP, while retaining much of the same basic protocol architecture [Deering96]. Among
the new features of 1Pv6 are an expanded address space (128-bit addresses vs. 32-bit |P
addresses), ease of route aggregation for scalability, a redesigned packet header for effi-

1. Oneinstance of a situation in which packets are deliberately dropped is a firewall, which enhances net-
work security by restricting the packets that can be forwarded to or from a network.
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Figure 2-1. The Internet Protocol Suite and Datalink Layers.

cient packet processing, and explicit support for security and authentication. In the context
of IPv6, the original Internet Protocol is referred to as IP version 4, or |Pv4. For the most
part, IPv6 issimilar enough to | Pv4 that most of thiswork (which dealswith IPv4) is appli-

cable to the newer protocol as well.

2.2 Asynchronous Transfer M ode

Asynchronous Transfer Mode (ATM) is a new network technology designed for “inte-
grated services’ networks capable of carrying multimedia data as well as conventional
computer data traffic [ATM Forum95]. ATM is a connection-oriented service that trans-
fers small, fixed-sized packets called cells through a switch-based network. Although it
makes no promises of reliable delivery, cellsthat are actually delivered are guaranteed to

bein-order.

ATM’ssmall, fixed-size cells (48 payload bytes) are hardly suitable for network protocols
such as IP, which are designed to use larger, variable-sized frames. To address the require-
ments of such network applications, an ATM Adaptation Layer (AAL) protocol fragments
larger, variable-sized packetsinto cells for transmission and reassembl e them upon arrival
at their destinations. The AAL typically used to transport IP packets is known as AAL 5

[Heinanen93]. (Other AAL protocols serve avariety of purposes, such astiming and syn-



chronization of continuous mediadata. Not all of them provide fragmentation and reassem-
bly.)

Because ATM is connection-oriented, it requires a signalling protocol to set up the for-
warding tablesin the network switches along the path to be taken by data. ATM signalling
also needs to reserve network resources for guaranteed-performance connections. INnATM
User-Network Interface (UNI) 3.1-compliant networks, this connection establishment is
done using the Q.2931 signalling protocol. Although ATM networks do not provide reli-
able delivery of data, their signalling protocols can be greatly simplified if they can be
assured of reliable transport of signalling messages. Inthe UNI 3.1 standard, this function-
aity is performed by a specialized Sgnalling ATM Adaptation Layer (SAAL) [ATM
Forum95].

ATM usesaVirtua Circuit Identifier (VCID) inthe ATM cell header to identify the con-
nection to which each cell belongs. VCIDs are local to a link; thus, the cells for a given
connection may have different VCIDs as they traverse the ATM network. Assignment of

VCIDsto a connection is a part of the setup done by ATM signalling.

The ATM protocol stack according to [ATM Forum95] is shown in Figure 2-2. We note
that ATM networks not complying with this standard will have a different (but probably
similar) protocol stack. For example, the XUNET Il experimental ATM testbed network
described in [Fraser92] implements its own adaptation layer, ssimilar to AAL 5. Itssignal-
ling is provided by a proprietary signalling protocol, which incorporatesits own reliability

functionality.

With the appropriate scheduling disciplinesin the network switches and support in the sig-
nalling software, ATM networks have the potential to provide real-ti me? performance
guarantees, such as bounds on bandwidth and packet loss. These performance guarantees
are likely to be necessary for many network applications, such as digital audio and video

[Ferrari90]. The ATM Forum has defined a number of traffic classes, performance param-

2. By “real-time’, we refer to a service that can provide mathematically provable bounds or guarantees on
performance.
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Figure 2-2. ATM Protocol Stack and Physical Layers.

eters, and interfaces for the support of different qualities of service. Unfortunately, no set

of specific algorithms for supporting these services has been defined.

Therefore, we chose to study a hypothetical ATM networking environment that does not
conform to ATM Forum standards, but has a set of well-known algorithms for providing
performance guarantees. We rely only on the following abstract properties of ATM net-

works:

e ATM is a switch-based network, with point-to-point links between switches. By con-
trast, many popular LANSs such as Ethernet are multiple-access, shared-media net-

works.

e ATM is connection-oriented (as opposed to datagram-based). There is some signalling
protocol capable of setting up virtual circuits and (if necessary) performing the neces-
sary admission control tests. In place of Q.2931 signalling, our simulated network uses
a protocol based heavily on the Real-Time Channel Administration Protocol (RCAP),
the signalling protocol used in the Tenet Real-Time Protocol Suite [Mah93].



e ATM can support performance guarantees. Although we make no assumptions for the
mechanism for providing guarantees, we do assume a well-defined interface. Our net-
work uses different versions of Rate-Controlled Static Priority Queueing (RCSP) as
scheduling mechanisms (along with appropriate admission control tests) to provide

performance guarantees [Zhang93a].

Although afairly recent innovation, ATM is currently gaining popularity. However, it is
uncertain whether or not ATM will become a ubiquitous, dominant network technology.
The existing installed base of Local Area Networks (LANS) such as Ethernet is consider-
able; replacing these networks with ATM will be costly, and in many cases unnecessary.
For the foreseeable future, it appears that large-scale connectivity will continue to involve
multiple, heterogeneous networks, and appropriate internetwork layer protocols. It seems
likely that ATM networks will be used as wide-area backbones, connecting existing, non-
ATM LANSs.

2.3 Quality of Servicein Packet-Switching Networks

The issue of providing quality of service support in packet-switching networks (such as
ATM) hasreceived considerable attention. By “quality of service”, we specifically refer to
the differential treatment of packetsin the network, usually depending on the requirements
of the network applications or on administrative constraints. For example, packet video
applications need some minimum throughput in order to deliver a usable picture quality.
Certain types of remote control applications require a bound on network delay in order to

make operation feasible and tolerable for the end user.

Our views on quality-of-service and guaranteed service are based on the Tenet approach
to real-time communication in packet-switching networks. The Tenet approach provides
strict, mathematically-provable performance guarantees that will hold even under worst-
case conditions of network load [Ferrari94]. This method places several requirements on
the network. First, the dataforwarding entities (e.g. routers and switches) must use suitable
gueueing and scheduling algorithms when processing network packets. A large class of
scheduling disciplines fit this requirement, including Earliest Due Date [Ferrari89], Hier-
archical Round Robin [Kalmanek90], and Rate-Controlled Static Priority [Zhang934].
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The second requirement is that network sources must be able to characterize their traffic
characteristics (e.g. peak and average sending rate) and their performance requirements
(e.g. delay or delay jitter). This information will typically be provided to the network at
connection setup time. If a connection is accepted by the network, the connection estab-
lishment istreated as a contract between the application and the network, whereby the net-
work agrees to provide the requested performance as long as the application adheresto its
traffic characteristics.

Finally, there must be a procedure for performing admission control when connections are
established. An admission control procedure determines, based on the current state of allo-
cated network resources, whether or not the network can accept a new connection and still
meet all of its promised guarantees. Note that the admission control tests must take into
account the worst-case traffic patterns, subject to the sources traffic characteristics, and

ensure that all guarantees will still apply at all times.

The realization of the Tenet approach in thiswork is based on Rate-Controlled Satic Pri-
ority (RCSP) queueing in the output portsof ATM switches. Conceptually, an RCSP queue
consists of two parts, a static priority scheduler and arate controller (see Figure 2-3). The
static priority scheduler buffers cells before they can be sent to the output. Each cell is
assigned a priority, based on the connection to which it. Whenever the output link isfree,

the scheduler transmits the highest-priority cell it has buffered.

Therate controller regulates the flow of cellsinto the static priority scheduler. Dueto vari-
able queueing delays caused by queueing, the spacing of cells along a given connection
may become distorted asthe cellstravel along the path of aconnection. This effect, known
asjitter, requires extra buffering in downstream queues in order to absorb bursts. The pur-
pose of the rate controller is to either completely or partially reconstruct the input traffic
pattern before cells are alowed into the scheduler, thus reducing the buffer requirements.
This reconstruction is accomplished by delaying selected cells for aconnection until those
cells conform to the original traffic specifications supplied by the source at connection

setup time.

11
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Figure 2-3. Block Diagram of a Rate-Controlled Static Priority Scheduler. The per-
connection queues in the rate controller “shape” the traffic so that it corresponds to the
source’s traffic specification. Packets are then admitted to the scheduler, which transmits
data to the output by priority level.

One potential disadvantage imposed by the use of arate controller isthat the RCSP queue
becomes non-work-conserving; in other words, the output link may remainidle, even when
there are cells queued in the rate controller. This effect may lead to some unnecessary
delaysfor cells. In our study of different QOS policies, we have experimented with replac-

ing some of the RCSP queues in the ATM network with work-conserving variants.

2.4 Current IP over ATM Approaches

As ATM and the Internet will likely co-exist in the foreseeable future, it is desirable that
hosts using either (or both) of these types of networks be able to communicate. One
approach to interoperability isfor IP to use an ATM network (with an appropriate adapta-
tion layer) asadatalink layer, in the sameway that Ethernet and FDDI are commonly used.
Conversely, the ATM protocol stack views | P as an application. The use of these two pro-
tocol stacks together in this way is commonly referred to as IP over ATM. The resulting

protocol stack is shown in Figure 2-4.
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igure 2-4. IP over ATM Protocol Stack. Different ATM networkswill likely have similar
adaptation layer and signalling components replacing AALS5, Q.2931, and SAAL inthe
above protocol stack.

There are severa approaches to IP over ATM, each of which defines a slightly different
relationship between the ATM network and the IP internetwork. Our research fits well
within the framework of three popular model s being advanced within the networking com-

munity. Although they differ in details, our work treats them almost identically.

The first model is the Classical Model of IP over ATM [Laubach94], proposed by the IP
over ATM working group within the Internet Engineering Task Force (IETF) 3. In this par-
adigm, an ATM network can support one or more | P subnets (referred to asLogical IP Sub-
nets or LISs in the literature).* Hosts and routers belonging to the same subnet can
exchange data directly, using virtual circuits to forward |P packets across the ATM net-
work. Two hosts belonging to different subnets (but attached to the same ATM network)
can only communicate viaarouter that isamember of both subnets. Figure 2-5 illustrates

the flow of datain this scenario. While classical IP over ATM is potentially inefficient in

3. We note that the IP over ATM and Routing Over Large Clouds working groups merged in May 1996.
The combined group, referred to as | nternetworking Over Non-Broadcast Multiple Access (ION), continues
the work of both of its ancestors [ION96].

4. Scalability and efficiency concerns may make it desirable to divide the hosts attached to an ATM net-
work into several subnetsif the ATM network islarge.
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that a path between ATM-connected hosts may require forwarding through arouter, it has

the advantage of preserving the original semantics of |P subnets.

Host A
LIS1
Host B
LIS1
Host C
LIS1
LIS2
ATM Network

Host D
LIS2

Figure 2-5. Classical IPModel and Logical |P Subnets. Host A can communicate directly

ith host B because the two are a part of the same subnet. However, hosts A and D belong

to different subnets, and must route their communication through an intermediate router
(host C), even though the two are attached to the same ATM network.

Another approach, taken by the Routing Over Large Clouds (ROL C) working group of the
IETF, seeks to remove the potential inefficiency of the classical model. In the ROLC
model, hosts attached to the same ATM network can communicate directly, even if they
do not belong to thesame LIS. Since part of the original 1P routing model dictatesthat hosts
on different subnets must communicate via a router (rather than directly), this method
forces changes to the way that | P routing and forwarding is performed. A Next-Hop Rout-
ing Protocol (NHRP) [Luciani96] communicates the routing information necessary to send

data between subnets directly acrossthe ATM network.

A third paradigm, proposed by the ATM Forum, is LAN Emulation (commonly abbrevi-
ated LANE or LE) [LANE95]. LANE' s approach isto make an ATM network appear asa
|EEE 802-compliant local-area network. Thus the units of data that are transmitted are
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| EEE 802 frames, rather than | P packets. This paradigm is quite similar to Classical IP, but
supports multiple network protocols (such as IPX or AppleTalk) in addition to IP.

For simplicity’s sake, we chose the Classical |P approach as our model of IP over ATM.
However, al three approaches can be viewed identically, for the purposes of thisresearch.
Their most important commonality isthat ATM-attached hosts transmit | P packetsto other
hosts across ATM virtual circuits. When the cells making up an IP packet exit the ATM
network, the IP packet is reassembled, and forwarding of the packet continues according
to standard IP routing (if necessary). Thus, an ATM network is treated as alink layer by

IP and the larger Internet.

There exist other schemes for using IP and ATM together, with various degrees of com-
patibility with the designs explored in this work. For example, various cell-based routers
(plus attendant algorithms) have been proposed and described, for example [Parulkar95],
[Ipsilon96], and [Newman96c]. These devices are hybrid devices, part IP router and part
ATM switch. Essentially, they perform packet forwarding for | P packets along virtual cir-
cuits established between adjacent switches. When instructed to, they can establish end-to-
end (or hop-by-hop) virtual circuits; packets are then forwarded on aper-cell basis, without

the need for I P protocol processing at every intermediate hop.

TCP and UDP over Lightweight IP (TULIP) and TCP and UDP over a Nonexistent 1P
Connection (TUNIC) define new methods for eliminating some or all of the Internet pro-
tocol headers across an ATM network [Cole96]. [Newman96a] and [Newman96b] offer
similar, more concrete protocols, in the same vein. We believe that our techniques could

potentially extend to these environments as well.

| P routers supporting tag switching [Rekhter96] use identifiers similar to ATM VCIDs to
streamline packet forwarding. Unlike VCIDs, tags are considered to be merely an optimi-
zation (avoiding the IP routing table lookups normally performed for each packet).
Another difference is that allocation of tags is intended to be driven by routing changes,
rather than the transmission of data. Subject to these differences, the ideas we explore in

thiswork are probably applicable.
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2.5 1P-over-ATM Design | ssues

The current approaches to | P-over-ATM described in Section 2.4 are primarily concerned
with providing basic connectivity. As such, they deal largely with issues such as routing
and address resolution, which address the fact that ATM is a non-broadcast, multiple
access network. However, they do not address certain design issues arising from basic dif-

ferencesin the nature of |IP and ATM networks.

We note three fundamental differences between IP and ATM networks. First are conflict-
ing connection models. | Pis connectionless; every packet issent on anindividual basisand
is delivered to its destination independently of every other packet. By contrast, ATM is
connection-oriented. It requires that network state be set up for a stream of packets before
that data can be transmitted.

Another difference isthe quality of service models of the two networks. The ATM signal-
ling protocol used to establish connections also allows users to specify the performance
they require from the network (for example, a minimum throughput or a maximum |loss
rate). If the network can support anew connection and its performance requirements, it can
guarantee that the set of packets sent on a connection will be given the required quality of
service. | P, on the other hand, has no end-to-end quality of service features (the RSV P pro-
tocol and integrated services work are intended to address this shortcoming, but such sup-

port is not currently widespread).

Thethird contrast isthe nature and size of packets supported by IPand ATM. In ATM net-
works, cells are small and fixed-sized. IP, by contrast, is designed around medium-sized,

variable-length packets.

These three basic differences motivate three design issues, which are the subject of this
research. Our first issue deals with extending the QOS features of an ATM network to IP
applications. Although IP in its current form has no provision for QOS support, the under-
lying ATM subnet has the capability to offer performance guarantees. We would like,
therefore, for Internet applications to gain some of the benefits of ATM performance guar-

antees, without end hosts or applications necessarily being aware of this capability.
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Another issue concerns the degree of multiplexing to be used on ATM virtua circuits. At
one extreme, ATM-attached routers could provide unique virtual circuits for individual
network conversations (such as single TCP connections). At the other extreme, they could
usevirtual circuitsastrunks carrying traffic for many conversations passing between apair
of routers. One could easily imagine hybrid schemes as well, which might use dedicated
virtual circuits for some traffic and route all other packets via default trunk-like connec-

tions.

A third design consideration is that of virtual circuit management. Because IP is connec-
tionless, thereisno explicit notification asto when underlying virtual circuits should be set
up or torn down. Some heuristic must be used to infer appropriate times for these actions.
Different schemes involve using permanent virtual circuits established at network startup
time, or switched virtual circuitsthat are set up on demand and torn down when idle. Spe-
cific design choices dictate idle timeout values and whether or not virtual circuits can be

cached for reuse by other |P conversations.

ATM-attached hosts and routers implement policies to address each of these issues. To a
certain extent, these policies can be implemented (and investigated) separately from each
other. Thus three design issues can be viewed as three parameter axes, denoting a space of
possible policies. Points within this design space correspond to design policies, made up
from a combination of QOS, multiplexing, and virtual circuit management policies. The

axes for this space are shown graphically in Figure 2-6.

2.6 IP-over-ATM Policies

In this section, we briefly summarize the alternatives we investigated for QOS, multiplex-
ing, and virtual circuit policies. We then fit them into the framework of the “policy space”
described in Section 2.5.

To address the quality-of-service issue, we investigated a number of policies, which used
various scheduling disciplinesinthe ATM network to express precedencefor certain Inter-

net applications. We list the various scheduling disciplinesin Table 2-1 (more details can
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Figure 2-6. IP-over-ATM Policy Space Axes. Each axes represents a set of design
alternatives to address a specific design issue. With certain limits, these policies can be
varied and investigated independently.

be found in Table 4-5 and Table 4-6). These schedulers control the transmission of cells

from the output queues of ATM switches.

Name Scheduler Remarks
nogos First-Come-First-Served A best-effort service only, with al cellstreated
identically.
sp Static Priority Simple static priority scheme, no rate control.
wC Work-Conserving Rate-Con- RCSP variant. Work-conserving refersto the fact
trolled Static Priority that thistype of queue will alwaystransmit acell if
oneisavailable.
nwc Non-Work-Conserving Rate- RCSP variant implementing ratejitter control. Due
Controlled Static Priority to jitter control, this scheduler is non-work-con-
serving.

Our investigation of multiplexing led us to examine three policies, which perform increas-

ing degrees of aggregation of traffic onto ATM virtual circuits. We summarize them in

Table 2-1. Scheduling Disciplines.

Table 2-2.
Name Policy
conv Virtual circuit per IP conversation (e.g. TCP connection or UDP flow)
app Virtua circuit per application type per host pair.
router | Virtual circuit per pair of routers, carrying all traffic passing through the pair of routers,
regardless of source or destination host.

Table 2-2. Multiplexing Policies.
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Finally, we investigated the effects of three different virtual circuit management policies,

as summarized in Table 2-3.

Name Policy
pve Permanent Virtual Circuits. These connections are never torn down.
svec Switched Virtual Circuits with 10-second static timeouts. Virtua circuitsidle for

longer than this amount of time are torn down.

svccache Switched Virtual Circuits with 10-second static timeouts. Virtual circuitsidle for
longer than this amount of time are cached for future re-use. After 300 seconds (5
minutes) of idle time, they are torn down.

Table 2-3. Virtual Circuit Management Policies.

We describe the various IP-over-ATM policies by the names of the QOS, multiplexing,
and virtual circuit management policies that make them up. For example, an experimental
configuration of sp-telnet-conv-svccache indicates ascenario where a static pri-
ority scheme was used to give preference to telnet applications, with multiplexing done on

a per-conversation basis, and with switched virtual circuits cached for reuse.

The specific instances of the three types of policies form the set of possible values along
each of the axesin the IP-over-ATM policy space. Points in this space correspond to spe-
cific IP-over-ATM policiesthat we evaluated in the course of thiswork. We show themin

Figure 2-7.

We observe that these axes are not entirely independent. For example, in an IP-over-ATM
service using PV Cs, it isimpractical to set QOS parameters for an unknown workload tra-
versing a fixed set of virtua circuits. Moreover, the sheer number of virtual circuits
required for acomplete PV C mesh likely forcesamultiplexing policy of onevirtua circuit
per router pair. Thus, the only PV C policy we consider is a QOS-oblivious (nogos), vir-

tual circuit per router (router) pair design.

In a similar vein, when performing router multiplexing, it is impossible to assign a
meaningful QOSto each virtual circuit, because the nature of the aggregate traffic between
the routers is unknown. Therefore, al of the policies that use a multiplexing policy of one

virtual circuit per router pair do not use any of ATM’s QOS features.

We point out certain interesting pointsin this policy space:
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Figure 2-7. IP-over-ATM Policy Space. Circles represent specific design pointsin this
space. The arrows parallel to the QOS axis reflect the fact that this study examined many
more QOS policies than could easily be depicted in this diagram.

e The nogos-*-pvc-router policy (labeled “1” in Figure 2-7) represents the ssim-
plest possible |P-over-ATM design. It was used by XUNET Il, awide-area ATM test-
bed, in its default configuration [Fraser92]. Other ATM network testbeds (such as
BAGNET [Johnston95]) have used this policy, in situations when a lack of interopera-

bility makes providing switched virtual circuitsinfeasible.

e The nogos-*-svc-router policy (denoted by “2” in Figure 2-7) is used by sev-
eral commercial ATM LANs employing SVCs, including the FORE Systems ATM
LAN described in [Biagioni93].

e We have implemented enhancements to the XUNET Il IP service to cover various
SVC policies (labeled “27, “3”, and “4”). More details on this implementation can be
found in [Mah94a).
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There are, of course, other considerations which must be addressed in the design of an IP-
over-ATM system. One example is the relationship between IP and ATM routing
(addressed in various ways by the various proposalslisted in Section 2.4). Aninvestigation
of such issues, however, is outside the scope of this work.
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3 Methodology

This chapter presents our methodology for evaluating the performance of different 1P-
over-ATM policies. We used ssimulations to look at the impact of using various | P-over-
ATM policies in a heterogeneous I P internetwork with awide-area ATM backbone. Spe-
cifically, we focused on the operation and performance of common Internet applications
running in this environment. By exploring the space of possible IP-over-ATM policies, we
were able to analyze the effects of different quality-of-service, multiplexing, and virtual
circuit management policies separately, as well as their interactions. Our simulations uti-
lized a new network simulation tool, the Internet Simulated ATM Networking Environ-
ment (INSANE).

3.1 Introduction

Fairly early in our experiment planning, we realized that we would need to rely on network
simulation for our evaluation. One reason was that there were almost no I P-over-ATM net-
works available for experimentation that fit our needs. We initially planned to use XUNET
Il [Fraser92], but it was decommissioned during the course of our investigations. Even if
a suitable network were available, implementation artifacts and background network traf-

fic would have introduced uncontrollable factors whose effects might be difficult to isol ate.

We briefly considered the use of analytic techniques. However, we felt that the workings
and dynamics of a large IP internetwork would be too difficult to analyze in a tractable
fashion.

A simulation, by contrast, was ideal for several reasons. First, it allowed us to capture the
behavior of hardware, protocols, and applications very closely. We were able to run our

experiments in a controlled setting, as we had complete control over the environment.
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Finally, because (in many cases) a simulation is a single program on a single computer,

testing and analysis was much easier compared to working in a distributed network.

We chose to ssmulate a wide-area | P internetwork, in which an IP-over-ATM subnet is
used as a backbone. Other networking technologies are used at |ocal sites. Wefelt that this
topology was consistent with our assumption that ATM will be used primarily for wide-

area, long-haul networks.

Upon this network, weimposed aworkload that approximated traffic generated by contem-
porary Internet applications. Individually, we simulated instances of common applications
(such as Web browsers and mail servers) using empirical-based models that mimicked the
traffic patterns produced by real programs. Our complete workload was generated by
instantiating a number of these applications on hosts throughout the network. The specific

applications we examined in this study are listed in Table 3-1.

Application Description Traffic Type

telnet Remote login Interactive

FTP File transfers Bulk transfers

HTTP World Wide Web Bulk transfers, somewhat interactive
audio Digital audio Continuous media (constant bitrate)
video Digital video Continuous media (variable bitrate)
SMTP Electronic mail Bulk transfers (background load only)
NNTP Network news Bulk transfers (background load only)

Table 3-1. Internet Applications.

A critical choicein any network evaluation is the set of performance metrics. In our case,
we chose to look at application-layer performance. We assumed that changes to the IP-
over-ATM backbone would manifest themselves in end-to-end application measures, such
asfiletransfer completion timesand packet loss rates. Wefelt that examining these metrics
would beimportant because they reflected effectsvisible to end users, unlike more abstract

measures such as average queue lengths.

We ran our workload and performed our measurements over a number of configurations,
covering alarge number of pointsin the IP-over-ATM policy space discussed in Chapter 2.

Wewere abletoinvestigate the effects of individual typesof policies (for example, varying
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multiplexing policies) by isolating their effects on the various application performance
metrics. For example, to see the effects of different multiplexing policies, we would com-

pare the performance of setups differing only in their multiplexing policies.

As amechanism to perform our experiments, we designed and built the Internet Simul ated
ATM Network Environment (INSANE). It contains models of many entities encountered
in the environment discussed above, simulating functionality from ATM cell transport to
TCP dynamics and application-layer workloads. It is well-adapted to investigating perfor-

mance in large networks.

In Section 3.2, we show the network environment we used for our evaluation. We describe
the workload we imposed on our network in Section 3.3. Section 3.4 discusses our evalu-
ation criteria and Section 3.5 discusses the actual experiments in some detal. In
Section 3.6, we present some details on INSANE, the network simulator we constructed
for this study. Finally, in Section 3.7, we present afew notes on our experiences with run-

ning and using the INSANE simulator.

3.2 Networ k Topology

Thetopology of our simulated network isloosely based on that of XUNET |1, awide-area
ATM network testbed largely sponsored by AT&T Bell Laboratories [Fraser92)].
XUNET Il connected a number of universities and research laboratoriesin the continental
United States from 1990-1996. At its peak, its backbone consisted of DS3 (45 Mbps) and
622 Mbps links between four universities and four government and industrial research lab-
oratories. Routers at each of the sites forwarded IP packets between the ATM backbone
and local subnets. XUNET I1’s physical topology is shown in Figure 3-1.

Our ssimulated ATM backbone connected six local area networks, representing six of the
eight XUNET Il sites. The main difference between our backbone and that of XUNET 11
was that we constructed the former to have exactly one bottleneck link. Figure 3-2 shows

the configuration of the ATM backbone network used for our experiments.

Each of the six campus sites consisted of two servers and two hundred workstations con-
nected to an idealized shared-media 100 Mbps LAN. The servers represented FTP and
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Figure 3-1. XUNET Il Backbone Topology.

WWW servers seen on the Internet today. The workstations were assumed to be desktop

machines, each primarily used by asingle person. The servers and workstations could com-

municate directly using the LAN for local communication, or to machines at other sites

through arouter, also attached to the LAN. Figure 3-3 shows the configuration of atypical

site.

The simulated wide-area ATM links each had a bandwidth of 1.5 Mbps, the same linerate

provided by T1 circuits. The delays along these links were representative of cross-country

links; the one-way delay between the switches on the long-distance bottleneck link was 30

ms while the one-way latencies between all other pairs of adjacent switches were each 5

ms. Although higher-speed links are in common use today, we feel that our results would

likely scale up to faster link speeds and larger amounts of aggregate traffic.
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Figure 3-2. Logical Topology of Simulated ATM Backbone Network.
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3.3 Workload

We designed the network workload to approximate the traffic produced by contemporary
(1996) Internet applications. To do this, we simulated the network activity of severa
common Internet applications, and placed instances of these applications onto various

hosts in the network during the course of asimulation run. In this section, we describe the
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various simulated applications provided by INSANE, as well as the composite workload
created out of instances of the individual applications.t

3.3.1 Telnet

The telnet application provides a means for users to login to computers across an |P net-
work [Postel83]. Part of the traffic generated by this application consists of single bytes (a
user’s keystrokes) sent in one direction along a TCP connection. The remote computer
responds to these data with replies of various lengths (a keystroke echo generates only a
single byte in return, but the user typing the final key of a UNIX shell command may gen-
erate a“reply” consisting of many bytes of data).

The behavior of the ssmulated telnet application is controlled by the empirical probability
distributions of tcplib, a set of traffic models designed for use in network simulators
[Danzig91]. For the telnet application, these distributions specify the interarrival times of
keystrokes, the size of responses, and the total duration of conversations. Although another
remote login application (rlogin [Kantor91]) is also commonly used, the traffic gener-

ated by the two is similar enough that we felt that simulating only one was sufficient.

3.3.2 File Transfer Protocol

The File Transfer Protocol (FTP) provides a service for copying files between computers
[Postel85]. It has been one of the most common Internet tools for the distribution of data
and software. Each FTP session consists of multiple TCP connections: a control connec-
tion and one or more data connections. User authentication, requests for files, and other
commands (plus their responses) are sent via the control connection. Each file is sent via

its own TCP data connection.

The number and size of files to be transferred is determined via empirical distributions,

again derived from tcplib. We note that in our model, al file transfers are downloads

1. Werecall that some of the applications use TCP to provide reliable delivery of data. In addition to guar-
anteeing delivery, TCP also attempts to minimize congestion in the Internet by regulating the amount of
data that each connection can send into the network. To simulate these effects on network traffic patterns,
we needed to implement the TCP congestion control, error recovery, and connection management algo-
rithms on each host.
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(from server to client). We believe that this behavior is representative of most file transfers

done on the Internet.

3.3.3 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) isused for communication between clients (also
popularly known as browsers) and servers on the World Wide Web [Berners-Lee96]. It is
a request-response protocol, in which a client opens a TCP connection to a server and
requests a file; the server then replies with the file, using the same TCP connection. The
Web uses amodel in which each document (also referred to as a page), consists of one or
morefilesto betransferred, each using its own TCP connection. For example, apage might
consist of text, plusthreeimages, in atotal of four filesto be transferred. Unlike FTP, there

is no control connection; each individua file transfer is salf-contained.

As no model of HTTP network traffic was available at the time of this study, we con-
structed our own model consisting of empirical distributions based on traffic traces. This
approach issimilar in spirit to that used by t cplib. Our model includesthe sizes of client
requests and replies, aswell asthe number of filestransferred per Web page, and the * think
time” between pages. More detail s about our model, and the process of data collection, can

be found in Appendix A.

3.3.4 Simple Mail Transfer Protocol

We simulated one source of “background” network traffic using an extremely course ssim-
ulation of the Smple Mail Transfer Protocol (SMTP) [Postel82]. SMTP uses TCP to
handle delivery of electronic mail on the Internet. Each SMTP transfer consists of two
phases: a request-response phase consisting of machine identification and option setting,
followed by some (sometimes short) one-way bulk datatransfers, each containing an email

message. M ultiple email messages can be sent in each TCP connection.

In INSANE, we only simulate the actual transfer of the email messages (taken from the
appropriate t cplib distribution), but not any of the handshaking that occurs beforehand.
We felt that for our purposes, a more precise simulation was unneeded and would unnec-

essarily increase the complexity of the simulation.
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3.3.5 The Network News Transfer Protocol

Another background traffic source is furnished by servers running the Network News
Transfer Protocol (NNTP) [Kantor86]. NNTP isaprotocol that uses TCP to deliver news-
group articles between news servers at different sites (they are then stored for retrieval by
local news clients). News serverstypically transfer articles at selected times (for example,

every fifteen minutes), with each server communicating with afixed set of peers.

INSANE' ssimulation of NNTP consists of news server processes periodically exchanging
batches of news articles. Both the number of articles per batch and the sizes of individual
articles are taken from tcplib distributions. We model only traffic between news serv-
ers, as we fedl that client-to-server traffic will be strictly local and not require wide-area

accCess.

3.3.6 Audio

A recent, growing trend is the live transmission of multimedia data across the Internet. To
examine this growing class of applications, we included two simulated multimedia appli-
cations in our traffic mix. The first sends digital audio data. One example of this type of
application is the Video Audio Tool (vat) [Jacobson96], which is used for multiparty
audio conferencing over the Internet MBONE [Macedonia94], a virtual network used to

provide IP multicast servicesto large portions of the | nternet.2

Our simulated audio application sends voice-grade audio, using fixed-size packets at acon-
stant throughput of 64 Kbps. The sender isan on-off source, with the on- and off-times con-
trolled by two of tcplib’s empirical distributions used for characterizing packet voice
traffic.

3.3.7Video

Another class of multimedia applications sends variable bitrate compressed video. An
example of thistype of applicationisvic, avideo conferencing tool used on the MBONE
[McCanned5, M cCanned6b]. We used packet traces to derive asimple empirical model of

2. We note that although many current multimedia tools are designed for multicast (one-to-many) dissemi-
nation, our simulated applications and network currently support unicast (one-to-one) transmission only.
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vic’sbehavior, when used for teleseminar multicasts. vic operatesin two states: a con-
ditional replenishment state to update pictures during periods of motion, and a background
update state to ensure that over along time period, al senders eventually get a complete
frame image. Our model captures the transitions between these two states, as well as the
packet sizes and interarrivals within those two states. More details of our model can be

found in Appendix B.

3.3.8 Composite Workload

To provide a complete traffic model to our simulated network, we needed to inject a mix
of application traffic. This aspect of the workload can be characterized by a set of arrival
processes of new applications starting up on various hosts throughout the network. It is
impossibleto give asingle characterization for all Internet sites—[ Caceres91] showed that
Internet traffic varies widely among several sites studied and [Paxson94b] documents the
change and growth of Internet traffic over time at asingle site. Our workload presents what
we feel is a “reasonable” workload for an Internet site, based on existing traffic studies
about the contributions of various Internet applications to wide-area network traffic.
Table 3-2 summarizes the arrival processes used to regulate the creation of instances of

applications at each of the network sites in our simulation scenario.

Mean Conversation
Type of Startup Interarrival Time,
Initiated By Connection To Arrival Process Per Site (seconds)
telnet workstations workstations Poisson 10
FTP workstations servers Poisson 15
HTTP workstations servers Poisson 5
SMTP servers servers Poisson 4
NTTP servers servers Uniform 225
Audio workstations workstations Poisson 600
Video workstations workstations Poisson 600

Table 3-2. Application Workload for a Single Site.

For our TCP-based applications, we first created application server processes on various
end hosts, which existed for the duration of the simulation. We then used various arrival
processes to spawn new application client programs on random hosts. These client pro-

cesses exchanged data with the designated server processes and terminated upon comple-
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tion, with a single exception: Our HTTP model does not contain any notion of a process
ending time; it does, however, model interarrival times between user requests for Web
pages. We therefore used Poisson processes to place new HTTP clients on each of the
client machines at random until every client machine contained a single Web browser, at

which point the Poisson processes terminated.

In the case of our UDP-based multimedia applications, we created both the sender and the
receiver of dataat the same time. Both the sender and receiver processes terminated at the

end of the conversation.

3.4 Evaluating | P over ATM Policies

We conducted our evaluation of different IP-over-ATM policies with respect to the appli-
cation-layer performance of common Internet programs, examining metrics such as file
transfer time and packet loss rate. Although this approach made consideration of lower-
layer details (such as queue lengths and per-cell delays) difficult, there were two important
advantages to this methodology. First, the results directly showed the effects that would be
visible to applications and users. Second, addressing the requirements and behaviors of
specific Internet applications allowed usto see effects peculiar to those applications, which

amore abstract model might not permit.

Asthe applications we measured all have different requirements, we used different perfor-
mance metrics for each of them. This section discusses the various measures we used, as

summarized in Table 3-3.

For telnet, the main performance metric of interest to the user isthe response time taken to
receive areply to akeystroke press. Delays of more than afew tenths of a second will be
noticeably annoying. However, delays of |ess than about one tenth of asecond are probably
not perceptible. Another metric of interest to telnet users is the time required to establish
the TCP connection used by a session. This time measures the delay between initiation of
the telnet session to the time the user can actually begin typing keystrokes to the remote
machine. Generally, longer delays are permissible for the connect time (compared to the

round trip time), as connection setup is performed only once per session.
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Application Metric Statistic
telnet Connection time Median
90th percentile
Response time Median
90th percentile
FTP File transfer time Median
90th percentile
Session transfer time Median
90th percentile
HTTP File transfer time Median
90th percentile
Page transfer time Median
90th percentile
audio Lossrate Overdl average
Overdue rate Overall average
video Lossrate Overdl average

Table 3-3. Application-Specific Performance Metrics.
In FTPfile transfer sessions, the user isgenerally interested in retrieving abatch of filesin
succession from an FTP server. An appropriate performance metric is therefore the total
amount of time taken to transfer all the files in an FTP session. To gain some further

insights, we a so examine the time taken to transfer individual files.

In the case of HTTP, the user isusually retrieving documents one by one, most likely read-
ing each document before requesting the next. Thus, one suitable metric is the time taken
to request and retrieve aWeb page. Since Web documents can consist of multiplefiles, this
response time includes the time needed to request and receive each of the component files.

Aswith FTP, we also measured the time required to transfer each individual file.

We assume that Internet audio and video applications are flexible enough to adapt to
changing end-to-end delays by buffering of data at the receiver. Given this premise, our
primary evaluation criteriaisthelossrate. The higher thelossrate, the lessintelligible will
be the audio and video stream at the receiver (we recall that these applications generally

run over UDP, which does not provide reliable data transport).

For audio applications, we aso measure and evaluate the end-to-end delays. In interactive

voice communication, the round-trip delay between two communicating people can be a
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determining factor on performance. Studies have shown that the round-trip time cannot
exceed 250-300 ms, or thetwo partieswill have difficulty interacting. Thisround-trip limit
leadsto a one-way deadline of 125-150 ms; we refer to these packets as overdue. We mea-
sured the fraction of audio packets meeting or missing a 150 ms deadline. Because I nternet
video data is typically transmitted at alow frame rate (5—15 frames per second), lip-syn-
chronization with the audio dataisfairly useless [Keshav94]. Because of thisfact, end-to-
end latencies are not as critical asfor audio data, so we did not evaluate the delays suffered

by the video application.

The sole purpose of including the NNTP and SMTP applications was to provide back-
ground network load. Thus, we did not measure the network performance received and

experienced by these applications.

In addition to application-specific performance measurements, we occasionally examined
other metrics, when appropriate. For example, in our evaluation of virtual circuit caching
(Section 6.6), measuring the cache hit rate gave a measure of the effectiveness of reusing

idle ATM connections.

We note that some of the quantities we measured are partially dependent on factors exter-
nal to the network. For example, file transfer times were a function of both network per-
formance and file size. While sizes of files requested in our experiments were generated
randomly (and thus beyond the control of the network), they were drawn from identical
distributions, across all experiments. Given this latter fact, we feel that comparisons based

on these metrics were feasible.

3.5 Experimental Procedure

Our evaluation required two steps. First, we gathered alarge amount of data by exploring
the space of possible IP-over-ATM policies. We then analyzed our data by performing
comparisons between results in such away as to isolate the effects of the alternatives for

each of the three design issues.

Section 3.5.1 provides a few details on the running of our experiments. In Section 3.5.2,

we describe our analysis and discuss some of the statistics involved.
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3.5.1 Gathering Data

Our experiments covered a wide range of 1P-over-ATM policies, intended to explore the
policy space discussed in Chapter 2. We used policies formed from the components listed
in Figure 3-4, in al meaningful combinations (for example, QOS-aware policies could not
be used with rout er multiplexing because that policy did not allow packet classification
with afine enough granularity). The useful combinations of quality-of-service, multiplex-
ing, and virtual circuit management policies resulted in a total of 103 different network

configurations.

Design Axis Policies
Quiality of Service nogos, sp, we, NWc
telnet, ftp, http, audio, video, isp, av, gosl
Multiplexing conv, app, router
Virtual Circuit Management pve, sve, svecache

Table 3-4. Components of 1P-over-ATM Policies.

We ran each of the network configurations at least three times (in some cases more) with
different initial random number generator seeds, in order to gain some statistical confi-
dence in our results. There were atotal of 336 simulation runs. Each ran for 4000 seconds
of simulated time, to reduce the effects of startup transients. In all cases, we used the net-
work configuration of Section 3.2 and the network workload described in Section 3.3.

3.5.2 Analysis of Data

Inour analysis, we compared the performance of the Internet applicationsin our traffic mix
when different IP-over-ATM policieswerein use. In general, we did pairwise comparisons
between policies aswe varied single components (for example, comparing two setupswith
different multiplexing policies, but keeping the QOS and virtual circuit management poli-
cies fixed). In other words, our comparisons took place only along the design axes of
Figure 2-6. This approach permitted us to isolate the effects of different types of policies,
while (through complete coverage of the design space) we were also able to see various

interactions.
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The comparisons we made between quality-of-service policies form the basis for
Chapter 4. Those involving multiplexing policies are presented in Chapter 5. Chapter 6

discusses results based on comparisons of virtual circuit management policies.

We note that many of our measurements resulted in sample distributions. For example, we
obtained the time taken to transfer each Web page requested during the course of an exper-
iment. To avoid the problem of comparing empirical probability distributions based on
thousands of sample points, we chose to compare the median and 90th percentiles of the
metrics in question. The performance metrics for which this procedure was applicable are
indicated by the rightmost column of Table 3-3.

As described earlier, our evaluation involved a number of comparisons between configu-
rations. For example, we compared the median time required to retrieve a Web page with
two different QOS policies, on the basis of three repetitions of each configuration. In such
comparisons, it isimportant to have someidea of the degree of confidence in acomparison,
in addition to the result itself. Thisis expressed in the concept of statistical significance,
which measures the probability that an apparent difference between systems is actually

meaningful and not due to random sampling errors.

Many researchers use the popular t Test for comparing unpaired samples for repeated
experiments. This statistical test is so named because it uses Student’s t distribution to
compute a confidence interval for the difference between the means of two sets of mea-
surements, which is then used to compare the two corresponding systems. Thus, one can
say that with 90% confidence (for example), one system is “better” than another, as mea-
sured by some metric. The procedure for computing at Test is straightforward and com-
putationally inexpensive. However, the t Test is only applicable in cases where the

quantities being measured follow a normal probability distribution.

We had no reason to believe the assumption of normality for any of the performance met-

rics of interest to us, and in any case we were not able to make enough measurements to

3. [Jain91], a popular performance analysis textbook, discusses the t Test, but unfortunately makes no
mention of the requirement that data samples follow a normal distribution.
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determine the exact distributions (recall that many measurements were run only three
times). It is important to note that we do know a great deal about the distribution of the
samples themselves (for example, the distribution of Web page retrieval times within a
single simulation run). However, we know little about the distributions of various statistics
(for instance the median or 90th percentiles) of these performance metrics across repeated

simulations.

In our evaluation, we drew on methods from nonparametric statistics, which make few
assumptions about the distributions of the sample data. In particular, we relied heavily on
a statistical test known as the Mann-Whitney U Test, as explained, for example, in
[Gibbons85]. This test uses the sorted ranks of the data values from both set of measure-
ments to determine the significance of differences between two alternatives. Intuitively, if
al the samples from one set of measurements fall below all those from the other set, we
can expressafairly high degree of confidence that thisis dueto actual differences between
the two respective systems. Conversdly, if the sorted samples are interleaved, it is likely

that the two systems do not differ significantly.

We used the Mann-Whitney U Test as a basis for computing a confidence interval for the
mean difference between two datasets. If the confidence interval encloses zero, then the
two datasets are not statistically different at the specified confidence level. Otherwise, the
arithmetic sign of the endpoints of the confidence interval give the relation between the
two datasets. In most cases, we performed our comparisons using 90% confidence inter-

vals; this should be assumed in our presentation unless we state otherwise.

3.6 An Internet Simulated ATM Networ king Environment

The vehicle for our experiments was a network simulator we have constructed, called the
Internet Smulated ATM Networking Environment (INSANE). INSANE simulates the
operation of a heterogeneous IP internetwork, which can include one or more ATM sub-
nets. Simulated application processes (representing common types of Internet applica-
tions) interact with each other over the network and log the performance they receive from
the network for off-line analysis. We model a number of different protocol layers, in both
the IP and ATM protocol stacks. The bulk of INSANE is implemented in C++

37



[Stroustrup91], with object classes representing various components of hosts, routers, and

switches.

The atomic and composite objects supplied by INSANE provide a simulated networking
environment that allows us to measure the network performance seen by various applica-
tions such as the World Wide Web or digital video transmission. The complete network

protocol stack supported by INSANE is shown in Figure 3-4.

User Layer User Behavior
Application,
Presentation, telnet| FTP | HTTP | SMTP | NNTP video audio
Session
Transport Tcp Udp
Internetwork Ip
LanDeviceDriver AtmDeviceDriver
Datalink, hal Sig, SigHost
Physical
Lan
ATM CellGoBackN

igure 3-4. Protocol Stack of INSANE. Correspondence between the ssmulator’s network
layers and the OSI reference model are shown. Where applicable, the simulation object
classimplementing a particular protocol entity isshown in £ixed-point type.

In this section, we describe the different protocol layersimplemented in INSANE, starting
from the datalink and physical layers (Section 3.6.1) and working up towards the applica-
tion layer (Section 3.6.4). In Section 3.6.5, we discuss some of the more interesting aspects
of INSANE’ simplementation.

3.6.1 Datalink and Physical Layers

Two different subnet technologies are available. The Lan type simulates asimple, ideal-
ized, shared-medialocal area network, whose bandwidth and latency can be configured on
a per-subnet basis. A LanDeviceDriver class handles the software interface between

the Lan subnet and higher-layer protocols (in this case, |P).
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The second datalink layer isan ATM stack, which itself consists of several different com-
ponents. The ATM layer provides connection-oriented cell delivery service (unreliable,
but in-order). To provide for the transport of data units larger than single cells across the
ATM network, our ATM stack providesasimple AAL protocol, which performs fragmen-

tation and reassembly of packetsin a manner similar to AALS.

Signalling entities are necessary to establish virtual circuits through the ATM network.
INSANE'SATM stack uses aprotocol very similar to the Real-Time Channel Administra-
tion Protocol (RCAP) [Mah93], which provides signalling functions in the Tenet Real-
Time Protocol Suite [Banerjea96]. RCAP uses a single end-to-end round trip of signalling
messages to perform admission control and resource allocation for new channels. RCAP
relies on a hop-by-hop reliable message delivery service (the prototype RCAP implemen-
tation uses TCP for reliable message delivery). In INSANE, this functionality is provided

by amodule that does a simple positive-acknowledgment retransmission protocol.

Finally, an AtmDeviceDriver class provides an interface between IP and the services
of the ATM network. In some sensethisclassisthe most important of the entire ssmulation.
It implements all of the various IP-over-ATM policiesfor quality of service, multiplexing,
and virtual circuit management. The specific policies used can be selected at simulation

startup time.

The various components of the ATM stack are realized in switches and host adapters
implemented as composite objectsin INSANE. The structure of the ATM switch is shown
in Figure 3-5. It is an output-queued switch, whose architecture is based loosely on the
XUNET Il switch [Fraser92]. Cells enter the switch via one of the CellInputPort
objects, each of which represents an input port on the switch. The SwitchModule object
translates the VCIDs of cells passing through the switch and routes each cell to the appro-

priate output port (one of the Cel1QueueRcsp objects).

In INSANE' s switches (as with XUNET I1), virtual circuit setup and teardown functions
are performed by a signalling process running on an outboard switch control computer;
these processes are simulated by SigRcsp objects. Signalling cells are sent using dedi-
cated connections established between adjacent switch controllers at network startup time;
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the SwitchModule on each switch routes cells on these connections to the SigRcsp
module. A Cel1lGoBackN object placed “in front” of each signalling process provides
reliable delivery. We note that in contrast to ATM Forum standard virtual circuits,
INSANE's ATM connections are simplex. Thus, bidirectional communication requires a

pair of virtual circuits.

SigRcsp
(Signalling)
CellGoBackN
(Reliahility)
CellInputPort CellQueueRcsp
> (Input Processing) \ * + /V (Output Port) -
CellInputPort CellQueueRcsp
®> (Input Processing) [ SwitchModule |  (Output Port) >

(VCID Trandation)

CellInputPort / \ CellQueueRcsp
- (Input Processing) (Output Port) -

Figure 3-5. ATM Switch Composite Object. Primitive objects are labeled with using
fixed-point type. Theflow of céllsisindicated by arrows. The scheduling
discipline used in this output-queued switch (RCSP, as shown) can be changed by

replacing the output ports and signalling module.

The structure of the ATM host adapter is very similar to that of the switch. The main dif-
ferenceisthat one of the* switch ports’ really consistsof an Aa1 object and AtmDevice-
Driver object leading to the host’s | P stack. The signalling module is dlightly different,

in order to account for the interactions between the ATM stack and the host.

INSANE s ATM switches and host adapters implement a strategy known as Early Packet
Discard (EPD). This technique attempts to improve the performance of TCP connections
traversing ATM networks, in which the unit of congestion loss (a single ATM cell) is
smaller than the unit of retransmission (a TCP segment, which may span many ATM cells).
Simulation experiments have demonstrated that TCP throughput can be severely degraded
dueto link bandwidth being wasted carrying useless data for packets that have already |ost
cells due to congestion. EPD addresses this problem by dropping cells for packets known
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to beincomplete dueto cell losses[Romanow94]. Assome ATM switchescurrently in pro-
duction offer this feature, we implemented EPD in the cell queues for all ATM switches

and host adapters.

3.6.2 Internetwork L ayer

The Internet Protocol is simulated by the Ip module (one per host). The primary function
of the Ip modulesis the routing of |P datagrams between hosts. Each has a static routing
table that can be loaded at configuration time. Although we have not yet implemented any

facilities for supporting dynamic routing, such afeature would not be difficult to add.

3.6.3 Transport Layers

We have implemented two transport-layer protocolsin INSANE. The more interesting is
the Transmission Control Protocol (TCP), implemented by the Tcp object class. We based
this protocol implementation very heavily on the TCP Reno implementation in BSD
4.4Lite UNIX (a detailed description of the BSD 4.4Lite kernel can be found in
[McKusick96], with awalkthrough of its networking implementation in [Wright95]). For
simplicity, we omitted several features such as urgent data, although we implemented
TCP s connection management, slow start, congestion avoidance, and retransmission algo-

rithms.

We aso implemented the BSD-style fast and slow timers, to simulate the operation of
BSD-like operating systems and to account for the effect of timer granularity on TCP per-
formance. Thesetimersfire every 200ms and 500 ms respectively, with each Tcp object’s

timers having a different random phase offset, in order to avoid synchronization effects.

The other transport protocol is the User Datagram Protocol (UDP), implemented by the
Udp object class. UDP provides alossy datagram service used by INSANE's multimedia
applications. Although it is frequently used for certain local-area services such as Sun’'s
Network Filesystem (NFS) [ Sandberg85], these services and their accompanying protocols

are not part of our study.
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3.6.4 Application Layers

We have implemented various simulated applications to use the TCP and UDP services of
INSANE. The applications, aready described in Section 3.3, cover a range from remote
logins to the World Wide Web to digital multimedia.

3.6.5 Simulator | mplementation

INSANE is an object-oriented, discrete-event smulator. In thistype of simulation, various
objects, such as queues or network protocol modules, communicate by posting events to
each other. Events signify occurrences such as a packet arrival or atimeout. Each event is
a message consisting of four components: A time that the event should be delivered, the
intended recipient of the event, the type of the event, and a data field whose interpretation
is dependent on the event type. Each object in the simulation has an event handler that does
all therequired processing for each different type of event. A event scheduler isresponsible

for delivering events to the various objects in the correct chronological order.

This type of simulator organization lends itself to a model of objects as finite state
machines, where they react to posted events by updating their internal state and potentially
causing actions to happen (such posting events to other objects or writing information to
thesimulator’ slog files). Infact, all of INSANE' s protocol objects areimplemented in this
fashion. While this model appears to be a good match for certain abstract objects such as
gueues, and even some protocol processing entities, it isnot avery natural way of express-
ing the behavior of application programs. In particular, we found that expressing procedure

calls or blocking system calls was difficult in this model.

INSANE' sdiscrete-event scheduler, simulation infrastructure, and alarge number of built-
in objects (also referred to as atomic objects or primitive objects) are al implemented in
C++ [Stroustrup91]. These built-in objects include various types of queues, network pro-

tocol modules, and user applications.

Every atomic object exports a set of commands for the Tcl scripting language
[Ousterhout94], which allows objects to be easily created and manipulated via Tcl pro-
grams. We found the use of Tcl as a configuration language has proven quite useful; net-

work configurations are simply Tcl scripts, which can utilize all of Tcl’ s control constructs
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to build complex objects (also referred to as composite objects). Although Tcl is an inter-
preted language, we see no performance degradation from using it because Tcl scripts are
primarily used only to configure a simulation scenario. The actual computations are per-
formed almost entirely by the compiled C++ code. Thisapproach has been taken by several
other simulation packages, two fairly recent examples are Ptolemy [Ptolemy96] and ns
[McCanned6q].

We feel that our smulator is fairly efficient, and is capable of simulating large networks
within areasonable amount of time. When simulating the network in Section 3.2 (approx-
imately 1200 hosts) with the workload described in Section 3.3, INSANE running on an
otherwise-idle Sun Ultra 1 (one 167 MHz UltraSPARC processor, 64 MB RAM, Solaris
2.5) could complete a 4000-second simulation run in approximately four hours of wall-
clock time. This results in a sslowdown of approximately 3.6:1 (the ratio of real time
€l apsed to simulation time elapsed). During our development, we noted slowdownsof 11:1
on Sparcstation 10 workstations (one 40 MHz SuperSPARC processor, 64 MB RAM,
Solaris 2.4) and 8:1 on a Pentium PC (one 100 MHz P5 processor, 48 MB RAM, FreeBSD
2.1.0-RELEASE).

3.7 Experience with INSANE

Thelong running time of our simulations imposed some heavy demands on our computing
environment. We used a distributed computing cluster belonging to the Network of Work-
stations research group at the University of Californiaat Berkeley. At the time, the NOW
cluster consisted of roughly one hundred Sun Ultra 1 workstations and forty Sparcstation
10sand 20s. By using idle workstations, we were able to run alarge number of simulations
in parallel. To avoid interference with other users of the cluster, we typically ran batches
of ten to fifteen runs overnight or on weekends. Each simulation run required about four to
five hours of wall-clock time on the Ultra 1s, or about twelve hours of wall-clock time on
the Sparcstation 10s. Simulations such as INSANE can berun in parallel reasonably well,
since each runwasasingle, sequential process which required no communication with pro-

cesses running on any other machines.
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Theonly 1/0 performed by each job consisted of writing to an output file. We compressed
the output files before saving to disk in order to reduce the disk bandwidth requirements.
Each run produced approximately ten megabytes of compressed output. We then ran a
series of postprocessing scripts over the output files to summarize and analyze the network

performance.



4  ATM Quality of Serviceand IP
Conversations

In this chapter, we examine the effects of different ATM quality of service policies on the
end-to-end performance of Internet applications. Although the Internet currently has no
means for explicitly exploiting ATM QOS features, we found that these features can be
used to affect end-to-end application performance. We investigated the effects of using
four different scheduling disciplines across a simulated ATM backbone, along with vari-
ous policies for assigning service parameters to Internet applications. We show that static
priority scheduling can be used to indicate preference for certain applications, although
low-priority traffic can suffer from starvation caused by high-priority bulk transfers. Con-
tinuous media applications can a so benefit from the use of guaranteed-performance ATM

connections.

4.1 Introduction

One of the features of Asynchronous Transfer Mode technology is its ability to provide
performance guarantees. By contrast, the Internet Protocol, as presently deployed, has no
support for end-to-end quality of service. We believe, however, that Internet applications
can still derive some benefits from using ATM quality of service features to get preferen-

tia treatment across an ATM subnet.

The correct quality of service to be used for a conversation will depend on the application.
For exampl e, interactive applications such astelnet and rlogin require low delaysto be use-
ful. Bulk transfers (such as those performed by FTP) work best over high throughput con-
nections. In many cases the QOS will be implied, based on pre-existing knowledge about
applications. Currently, Internet applications are not required to specify their QOS require-

45



ments (indeed, there is no currently widely-accepted standard for doing so, though RSVP
[Zhang93Db] is a popular contender). There are, however, several methods for a network to

infer the QOS requirements of a stream of |P datagrams:

e By examining TCP or UDP port numbers (or other higher-layer information), a host or
router at the edge of the ATM network may be able to determine the application type of
an IP conversation, and hence the appropriate quality of service. This approach relies
on many applications in the Internet using well-known ports and the network usage of

common applications being well-known.

e By monitoring the throughput of a given conversation over time, the network may be
able to compute an appropriate set of requirements for an ATM virtual circuit (for
example peak and average throughput requirements). Such an adaptive scheme is, of
course, only useful when an IP conversation lasts long enough to permit reliable mea-

surements.

e The application may be able to send some sort of QOS request indicating its require-
ments. Such a message could, for example, be contained within an IP option of a data
packet or be sent using a signalling protocol such as RSVP [Zhang93b] or the Real-
Time Channel Administration Protocol (RCAP) [Mah93].

o A default set of parameters (perhaps “best effort with no resource reservation”) is nec-

essary for the case in which no QOS can be determined for a given conversation.

We recognize that these approaches to QOS, if implemented only the basis of single sub-
nets, will not provide end-to-end performance guarantees to | P conversations (at least not
in the general case of a heterogeneous internetwork). However, it can potentially improve
network performance for applications traversing an ATM backbone network, where

resources are presumably more scarce than in alocal area environment.

In Section 4.2, we discuss some prior and related work in the area of providing quality-of-
service guarantees. We discuss some of the mechanisms used in this work in Section 4.3.
Three sections of this chapter describe our simulation results with various scheduling dis-

ciplines and policies for employing them; a summary of these results can be found in
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Table 4-1. Section 4.4 shows the results of using static priority scheduling to give prefer-
enceto selected Internet applications. In Section 4.5, we show similar resultsfor the work-
conserving variant of the Rate Controlled Static Priority (RCSP) scheduler. Section 4.6
discusses results with arate-jitter-controlled variant of RCSP. Finally, we present our con-

clusionsin Section 4.7.

Static priority scheduling can be used to improve the performance of interactive and continuous-
media applications. However, starvation of low-priority traffic is a danger when attempting to
use this mechanism to help FTP bulk transfers.

Attempting to use rate control to police bulk transfers yieldsinconclusive results. In some cases,
resource allocation close to the ATM network’s capacity can cause admission control teststo
fail, causing bulk transfersto be routed over unpoliced, best-effort connections.

Audio and video applications can benefit from the use of guaranteed-performance connections
using rate-controlled static priority queueing.

The smoothing provided by ratejitter control reduces the occurrence of buffer overflows and
TCP retransmissions, improving long bulk transfer performance.

Table 4-1. Summary of Quality of Service Results.

4.2 Prior Work

Although no prior work has been published on thisuse of QOSin ATM subnets supporting
I P, the problem of providing QOS in an internetworking environment such as the Internet
has received considerabl e attention. For the most part, existing |P networks do not provide
any quality of service support. All packets and conversations are treated identically. How-
ever, some work has been done with the Type of Service (TOS) bits in the IP header
[Almquist92] or IP s precedence field [Bohn94] to express the priority assigned to a data-
gram. IPv6 contains support for a Flow 1D, which can be used to identify datagrams as
belonging to a particular flow and thus eligible to receive a particular treatment by routers
[Deering96].

Various solutions exist to address quality of service considerations in non-IP internet-
works. For example, networks based on algorithms and protocols such as the Tenet Real-
Time Protocol Suite offer mathematically provabl e end-to-end real-time performance guar-
antees [Banerjea96]. They require the applications to specify their requirementsto the net-
work in advance. Admission control testsare used to limit the number and type of real-time
connections allowed into the network, in order to provide deterministic or statistical per-

formance guarantees. These guarantees hold even under “worst-case” conditions.
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The Integrated Services model being designed for the Internet includes several service
classesto support differential treatment of 1P packets[Clark92, Braden94]. Oneisaguar-
anteed service, providing mathematically provable bounds on delay and bandwidth
[ Shenker96]. Another service being actively considered isacontrolled-load service, which
attempts to provide requesting applications the loss rates and delays they would receive
from an “unloaded” (uncongested) network [Wroclawski96]. The resource reservation
protocol RSVP is designed to provide signalling functions for these services in the global
Internet [Zhang93b)].

4.3 Quality of Service Mechanisms

Several mechanisms are required to support giving different qualities of service to packets
inan IP-over-ATM setting. At the lowest level, the ATM network needs to support differ-
ent qualities of service for cells. We describe the schemes we used in this work in
Section 4.3.1.

At ahigher layer, IP routers with interfaces onto the ATM subnet can then use these ATM
mechanisms according to some QOS policy. To do this, the routers must contain mecha-
nisms for classifying IP packets and forwarding them onto different virtual circuits.
Section 4.3.2 describes these methods.

4.3.1 ATM Network Support for Quality of Service

We configured the RCSP schedulersin our simulated switches to support arange of delay
bounds. We recall that each of the schedulers controlled access onto a T-1 speed link,
(1,536,000 bits per second). At this bit rate, a 53-byte ATM cell (including payload and
header, but no other overheads) has a transmission time of 276 microseconds. We ignored

delays caused by T-1 framing.

For our ssimulations, we defined delay bounds supported by each scheduler between 16 and
128 cell transmission times. Due to scheduling granularity, the regulators in the RCSP
scheduler imposed an additional worst-case delay of 8 cell times. These settings yielded
thelocal delay boundsfor each priority level, asshown in Table 4-2. Best-effort traffic was
given the lowest scheduling priority, and was unregulated. Signalling messages were sent
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the guaranteed priority classes.

via PV Cs whose cells were prioritized higher than best-effort traffic, but lower than al of

RCSP Delay | Switch Delay
Level Cell Times Bound (ms) Bound (ms)
0 16 4.4 6.6
1 32 8.8 11.0
2 64 17.6 19.9
3 128 35.3 375
Signalling
Best-Effort

Table 4-2. Scheduling Priority Levels and Local Delay Bounds.

The ATM-attached routers requested virtual circuits by specifying the endpoint of the con-
nection and the various QOS parameters, as shown in Table 4-3. We note that these param-
eters were a subset of those used in [Banerjea96]; the remaining parameters are set by
min = 0), fixed-size ATM
= 48 bytes), and no packet drops due to buffer overflows (W _.. = 0).

implicitly assuming the use of deterministic delay bounds (Z
cells (S,

in
We note that the RCSP scheduler supports a discrete number of local delay bounds. If a
router requested a per-switch delay bound falling between the delay bound values sup-

ported by a queue, our signalling software treated the establishment as if it had requested
the next lower delay bound supported by the queue.

Note that the delay bounds specified were local delay bounds (in other words, per switch),
not end-to-end delay bounds as would normally be expected [Ferrari90]. We designed the
network in this way because the decomposition of end-to-end delay bounds into a set of
local delay bounds is a problem outside the scope of thiswork. In particular, some policy
must generate, from an end-to-end delay bound, afeasible set of local delay bounds to be
requested at each queue. While this computation is simple when given the state of resource
utilization at every switch in the network, such information (in perfect form) isunlikely to

be available in rea networks. Thus, we deferred consideration of this particular issue.

In our different experiments, we actually used severa different variants of the RCSP

gueue, each with different “strengths’ of QOS support, as summarized in Table 4-4. The
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Parameter Metric

destination Destination endpoint of the virtual circuit. Each virtual circuit issim-
plex (unidirectional) and unicast (one receiver). The ATM protocol
stack in INSANE uses small integers as network addresses.

X Minimum inter-cell spacing. Determines the peak datarate along a
virtual circuit.

X Average inter-cell spacing. Determines the average datarate along a
virtual circuit.

I Averaging interval, over which the average rate specified by X, .
must hold.

d Local delay bound at each switch.
Table 4-3. Parameters Given to Signalling System to Establish a Virtual Circuit.

first, giving the weakest QOS assurances, was a pure static priority scheduler. It uses only

the priority queueing mechanisms, without rate control or admission control. Although it
provides no performance guarantees, it isasimple approach to providing different network

Services to various conversations.

Priority Rate Admission | Jitter
Type Symbol Queueing Control Control Control
Best-effort nogos No No No No
Static Priority sp Yes No No No
Work-Conserving we Yes Yes Yes No
RCSP
Non-Work-Conserving | nwc Yes Yes Yes Yes
RCSP (Rate Jitter Con-
trol)

Table 4-4. Rate-Controlled Static Priority Variants. These different schedulers can all
be expressed as similar “versions’ of the original RCSP scheduler.

The second variant was a work-conserving RCSP queue. This type of scheduler imple-
ments priority queueing and rate control. In order to provide performance guarantees, it

relies on admission control at channel setup time.

The last variant was non-work-conserving RCSP. In addition to the features of work-con-
serving RCSP, it performsaform of distributed ratejitter control, in which cellsare delib-
erately delayed in the network in such away asto partially reconstruct theoriginaly arrival
pattern of cells into the network. Although this tactic reduces the variation in end-to-end
delaysaong guaranteed connections, it hasthe disadvantage of increasing the average end-

to-end delay.’
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4.3.2 Packet Classification

In order to provide differing qualities of service, ATM-attached routers need to be able to
classify incoming packetsinto different |P conversations. This classification must be done
on a packet-by-packet basis, since IPisaconnectionless network layer protocol. Given the
current architecture of IP, it makes the most sense to do thisin athin layer beneath 1P and
above the ATM adaptation layer; in a BSD-based UNIX implementation, the code would

reside as a part of the device driver for the ATM network.

We identify different | P conversations by a conversation key, which consists of the source
and destination P address, | Ptype-of-servicefield, the transport layer protocol, and (where
applicable) the source and destination port numbers at the transport layer. The applicable
header fields of a TCP/IP packet are shown in Figure 4-1. Analogous fields are used for
UDP or other protocolslayered on top of I1P. We note that this approach violates the tradi-
tional layering paradigm common in networks; it is necessary because | P does not support
any notion of connections. Our concept of aconversation issimilar to that of an I1Pv6 flow.
Infact, if we wereto extend thiswork to | Pv6-over-ATM, we would be ableto useits Flow

ID field to perform some of the packet classification.

Version{Hdr Len| Preced | TOS Total Length
ID Flags Fragment Offset
|P Header TTL Protocol |P Header Checksum

Source IP Address
Destination |P Address
Source TCP Port Destination TCP Port
TCP Sequence Number
TCP Header TCP Acknowledgment Number
Hdr Len| Rsrvd Flags Window Size
TCP Checksum Urgent Pointer

igure4-1. TCP/IP Header Fields Used for Conversation Keys. White (non-shaded) fields
are those used to identify individual |P conversations.

1. The RCSP agorithms support another form of jitter control known as delay jitter control. It perfectly
reconstructs the original arrival pattern of cellsinto the ATM network, at every switch. However, it requires
timestamping of every ATM cell. We deemed this functionality infeasible to implement in high-speed ATM
networks, and so did not investigate this aternative.
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We distinguish different applicationsin one of two ways. All of our TCP applications have
the property that they are assigned “well-known ports’ (well-known transport-layer
addresses) [Reynolds94]. Assigning fixed port numbers to certain applications enables
client processes to easily locate server processes (for example, atelnet client application
knowsthat it can locate telnet servers on remote hosts on TCP port 23). An ATM-attached
router can check the source and destination port numbers of a TCP packet; if it seesawell-
known port number inthe TCP source port field, the packet islikely transmitted by a server
process to a client process. Conversely, it a well-known port number appears in the TCP
destination port field, the packet is likely transmitted by a client process to a server pro-

cess.?

For our UDP applications, determining the application is slightly more problematic. For
the audio and video applications we simulated, there are no well-defined port numbers;
although we can use the UDP port numbers for the purpose of determining a conversation,
we cannot, in general, use these fields to determine the applicati on.3 Weinstead simul ated
the use of higher-layer protocol fields which specify the media type of each packet (e.g.
audio or video). An example of such aprotocol isthe Real-Time Transport Protocol (RTP)
[Schulzrinned6].

In Table 4-5, we list the different conversation types and corresponding QOS parameters
supported by our simulated routers. In some cases (specifically the telnet, video, and audio
applications) the parameters can be derived based on known traffic patterns. Bulk transfer
applications such as FTP and HTTP are more difficult to characterize, since thesetransfers
can “expand” to consume all the resources on alink. For these cases, we settled for a set

of “reasonable” values.

2. Among the applications we studied, there exists one notable exception to this heuristic. World Wide Web
URL s can specify a port number for HTTP requests; thusit is possible for Web serversto listen to port num-
bers other than the default, which is 80. However, in arecent survey of HTML documents collected by the
Inktomi “Web crawler”, approximately 94% of the documents surveyed were accessed by the standard
HTTP port [Woodruff96].

3. Beginning with version 3.5, mrouted, the MBONE routing daemon, now assumes a mapping of priori-
ties (and suggested applications) onto UDP port numbers. For example, “highest priority, i.e. audio” datais
assumed to map to UDP ports 16384—-32767. The Internet session directory tool sdr conforms to this map-
ping, as of version 2.1al [Handley96].
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Conversation Xpmin Xave
Type Direction | d (Peak Rate) (AverageRate) | |
telnet up 10 ms 20 ms 50 ms 500 ms
19.2 Kbps 7.68 Kbps
down 10 ms 10 ms 20 ms 1000 ms
38.4 Kbps 19.2 Kbps
FTP (control) | up 20 ms 100 ms 500 ms 5000 ms
3.84 Kbps 0.77 Kbps
down 20 ms 100 ms 500 ms 5000 ms
3.84Kbps 0.77 Kbps
FTP (data) up 80 ms 100 ms 100 ms 2000 ms
3.84 Kbps 3.84 Kbps
down 80 ms 20 ms 20 ms 2000 ms
19.2 Kbps 19.2 Kbps
HTTP up 40 ms 50 ms 100 ms 10,000 ms
7.68 Kbps 3.84 Kbps
down 40ms | 4ms 8 ms 1000 ms
96.0 Kbps 48.0 Kbps
audio any 20ms | 4ms 5ms 100 ms
96.0 Kbps 76.8 Kbps
video any 50 ms 26ms 35ms 2000 ms
148 Kbps 110 Kbps

Table 4-5. QOS Parameters By Conversation Type. The background applications
SMTP and NNTP are not listed because they were always sent best-effort.

Some traffic types have associated with them two different sets of QOS parameters, corre-
sponding to the two directions of a duplex connection. These directions are labelled “ up”

and “down”. “Up” refersto data sent from a client to a server (for example, packets from
aWeb browser to a Web server). We apply the label “down” to traffic from a server to a
client (such as the packets containing telnet keystroke echoes). We note that even a unidi-
rectional data transfer (such as an FTP download) requires bidirectional connectivity, due
to the need to send TCP acknowledgments. Because our simulated ATM connections were
simplex only, TCP traffic required two virtual circuits, one each for the “up” and “down”

traffic.

We also recall that FTP uses two types of TCP connections, one for control messages and
another for actual data transfer. Asthey use different TCP ports, it is easy to distinguish

the two and assign them different QOS parameters, if necessary.
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4.4 Static Priority Schemes

Our experiments with static priority schedulers within the ATM network showed that,
although prioritizing the traffic produced by individual applications enhances their perfor-
mance, this effect can come at the cost of the performance of other applications. Somelow-
volume applications, such as telnet, had no noticeable effect on other traffic. However,
assigning higher prioritiesto bulk transfer applications such as FTP has asevere, detrimen-

tal impact on the performance of interactive traffic.

To investigate the effects of asimple static priority scheduler, we experimented with sev-
eral QOS policies, whose parameters are shown in Table 4-6. Some gave a higher priority
to traffic generated by individual applications. These policies alowed us to see the “best-
case” improvement which individual applications could see, as well as the consequences
for other applications. We designated these QOS policies sp-telnet, sp-ftp, sp-
http, sp-audio, and sp-video, so named after the application selected to receive
preferential treatment.

Other policies assigned increased priorities to combinations of applications, in order to
explore interactions between applications. Thefirst, named sp - i sp, forwards both telnet
and HTTP traffic at higher priority. (It received this appellation because it gives preferen-
tial treatment to interactive applications of interest to present-day Internet Service Provid-
ers.) A second policy, designated sp-av, sent all audio and video data at high priority.
Finaly, the sp-gos1 policy transmitted data for all supported applications (telnet, FTP,
HTTP, audio, and video) at their assigned higher priority levels, with only the background
traffic (SMTP and NNTP) sent best-effort.

Within the experiments using each QOS policy, we also varied the multiplexing and virtual
circuit policies (two alternatives each, for atotal of four different setups, designated app -
svec, app-svccache, conv-sve, and conv-sveccache). We also performed sev-
era repetitions (usually three, but sometimes more) of each experiment, with varying

random number seeds.

Our results show comparisons of the different QOS policies against results obtained with

the nogos policy, which sent al traffic best-effort, at the default priority level.
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Conversation Types

telnet FTP (control)| FTP (data) HTTP Audio| Video
QOS Palicy up |(down| up |down| up |down| up |down
Sp-nogos
sp-telnet 1 1
sp-ftp 2 2 3 3
sp-http 3 3
sp-audio 2
sp-video 3
sp-isp 1 1 3 3
sp-av 2 3
sp-gosl 1 1 2 2 3 3 3 3 2 3

Table 4-6. Scheduling Priority Levelsfor Static Priority Policies. Each row representsa
single QOS policy for the static priority scheduler, while each column stands for the
data generated by a given application. Numbers signify the priority level given to an

application’s data by a specific QOS policy (lower numbers indicate priorities). Blank
entries signify that an application receives best-effort, lowest-priority service. SMTP

and NNTP conversations, not shown here, are always sent best-effort.

4.4.1 Single-Application Static Priority Policies

Our results with single-application static priority policies show that they can yield signifi-
cant performance improvements for bulk transfers (such as FTP and HTTP) and continu-
ous mediaapplications. Theinteractive remote |ogin application (telnet) saw smaller gains.
However, the lack of admission control or policing caused problems for telnet, audio, and

video applications when FTP bulk transfers were given priority.

The sp-telnet QOS policy caused only small decreases in both the telnet connection
setup time and keystroke response time. We saw improvementsin the median connect time
in the two svccache configurations (20 ms faster connections, for a 10% speedup). The
90th percentile only showed statistically significant improvements in the app-svc con-

figuration (the average speedup was 100 ms, or 29%). Figure 4-2 illustrates these effects.

We also measured the median and 90th percentile of telnet response times; that is, the time
needed to get a response to user keystroke packets. We saw statistically significant
improvements in the response time, averaging about 20% in the median and almost 40%

at the 90th percentile. The absolute magnitude of these differences, however, was quite
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Figure 4-2. Effectsof sp-telnet Policy on Telnet Connect Times. Stacked bars denote
the 90th percentile and median connect times. The effect of the new QOS policy can be
seen by comparing adjacent bars within each pair. Pairs of bars correspond to different

multiplexing and virtual circuit management policies, as discussed in later chapters.

small (about 16 ms and 70 ms respectively), probably not perceptible to humans. These

effects are shown in Figure 4-3.

03 T T T T
nogos, 90th Percentile
noqos, Median
% 025 sp-telnet, 90th Percentile i
2 sp-telnet, Median s
@]
E;, 02 r i
(0]
£
|_
! 0.15 + i
c
o
?g 0.1 - i
o}
3
[ 0.05 i
0
app app conv conv
svc svccache svc svccache

Figure 4-3. Effects of sp-telnet Policy on Telnet Round-Trip Times.

When we turned our attention to the sp- £t p policy, we saw that it significantly reduced

the amount of time required to complete single FTP file transfers, as shown in Figure 4-4.
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Theuseof sp- ftp had only aminuscule effect on the median filetransfer time. However,
it succeeded in decreasing the 90th percentile of file transfer times by about half. We
attribute the difference to fixed overheads (such as propagation delays) playing amore sig-

nificant role in small file transfers than in large ones.
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Figure 4-4. Effects of sp-ftp Policy on FTP File Transfer Time.

The effects on the completion time of an entire FTP session were more apparent. This
metric measures the time to establish a control connection from client to server, transfer
some number of files, and close the control connection. We saw improvements of about
30% in the median session time and about 50% in the 90th percentile of session times, as
shown in Figure 4-5. The absolute values of these improvements, tens of seconds, should

be easily perceived by users.

The drawbacks of astatic priority schemewere borne out, however, in thefact that the sp -
ftp policy delivered significantly worse performance to other applications. For example,
telnet delays were much increased; the 90th percentile of telnet round-trip times increased
by 32-78%. The median Web page retrieval time increased by 1-29%, as shown in
Figure 4-6. This difference was only statistically significant for the conv-sve configu-
ration at 80% confidence, but the app-sve, conv-sve, and conv-svccache setups

showed longer retrieval times with 60% confidence. Perhaps more importantly, the audio
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Figure 4-5. Effects of sp-ftp policy on FTP Session Times.

loss rate increased to 2.0-2.8% (an amost tenfold increase). We observed the video loss

rate to be in the range of 4-8%, almost three times what it was with the nogos policy.
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Figure 4-6. Effects of sp- £tp Policy on HTTP Performance.

The effect of the sp-http policy on Web traffic was similar to that of sp-ftp on FTP.
It had the general effect of reducing the time to transfer individual files by 12—20% at the
90th percentile and by 30-35% at the median. For the most part, however, the per-filegains

were reflected in improvements in the transfer time of complete Web pages. The median
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page transfer times were shortened by about 20%. The 90th percentile of transfer times
reflected 37-45% improvements. Interestingly, we could find no statistically significant
effects on other applications, even at the 80% confidence level, and examining the mean
differences provided no obvious trends. We believe that this result was a consequence of
the generally shorter length of HTTP files, compared to FTP files.

When weranthe sp-audio policy, it had the expected effect of reducing the loss rate of
audio data, at least in scenarios using per-application (app) multiplexing. The packet loss
rate, in the range of severa packets per thousand in the case of best-effort data, was
reduced, in most cases, to dightly lessthan one packet per thousand. Thiswas an improve-
ment of 44-82%, the effects of which are shown in Figure 4-7. The effects with per-con-
versation (conv) multiplexing were not statistically significant. However, we saw that the
fraction of overdue audio packets (taking longer than 150 ms to reach their destinations)
dropped from 5-7% to 2—-3%, areduction of 43—75%.
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Figure 4-7. Effects of sp-audio Policy on Audio Loss Rate.

We expected, and saw, large reductions in the packet | oss rate when sending video data at
a higher priority (the sp-video policy). The loss rate decreased from 1-2% to about
0.1% or less, areduction in the loss rate of about 90-95%. This improvement was stati sti-

cally significant for app-svc, app-svccache, and conv-svccache setups. In a
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gualitative sense, the results were similar to those of the sp-audio policy on audio data,

but more pronounced.

4.4.2 Combination Static Priority Policies

To acertain extent, running combinations of applicationsat higher priority had effectssim-
ilar to those of individual applications. In some cases, however, an excess of high-priority
traffic caused a number of expected performance improvements to disappear. One likely
explanation is the starvation of the ATM signalling system, which we observed in the case

of the sp-gos1 policy.

As described earlier, the sp-isp policy assigns a higher-than-default priority to both
telnet and HT TP traffic. We noted ageneral improvement in the performance of both appli-
cations, only dlightly lessthan those seen with the single-application policiessp-telnet
and sp-http, individually. For comparison, the 90th percentile of telnet response times
improved by 29-39% (with three of four configurations showing statistically significant
improvement), as compared to 36-46% with sp-telnet. The 90th percentile of Web
page transfer times improved by 35-44%, whereas with the sp-http policy it improved
by 37-46%. In general, sending these two applications’ datavia high-priority connections

had no significant impact on the other measured applications.

In asimilar fashion, audio and video applications saw improvements with the sp-awv pol-
icy, similar to theindividual sp-audio and sp-video policies. Both applications saw
sizeablereductionsin their loss rates (and, in the case of the audio application, the overdue
rate). Most setups exhibited improvement with 90% confidence, and afew only with 80%
confidence. Aswith the sp-1sp policy, applications using the default priority were only
dlightly affected (or not at all) by the sp-av policy.

The sp-gos1 scheme exhibited an interesting combination of effects. Telnet connect
times rose significantly for svc setups, an average of two to four times longer at the 90th
percentile. To explain this, we note that telnet connect times consist of two components.
Firstisthetimeto establish an ATM virtua circuit across the backbone. Second isthetime
taken to do a TCP connection establishment using that ATM connection. We infer that the

observed increase was due to drastically longer virtual circuit setup times, since the actual
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TCP packets for telnet had the highest priority of any in the network. Our evidence indi-
cates that signalling traffic (given its own priority level just above the default, best-effort
priority) was partially starved by the large volume of higher-priority data traffic. This sit-
uation could be avoided by sending all signalling traffic at the highest priority level, or by
using guaranteed-performance virtual circuitsfor signalling traffic. We note that this effect
was somewhat mitigated by the use of virtual circuit caching, because telnet performance
became | ess dependent on the ability of the ATM signalling system to establish virtual cir-

cuits quickly.

Some other metrics also showed changes with the sp-gos1 scheme. The 90th percentile
of telnet round-trip times was reduced by an average of 50-90 ms. FTP and HTTP transfer
times showed little significant changes, except for 20-25% speedups in the conv-svec-
cache setup. The conv-svccache configuration also produced large, significant
reductionsin the audio and video lossrates, aswell asthe audio overduerate. At lower con-
fidence levels (80%) these improvements became significant for other configurations as
well.

4.5 Work-Conserving RCSP

In general, our continuous media (audio and video) applications benefited from the use of
work-conserving RCSP, in particular with respect to audio delays and video losses. Appli-
cations that performed bulk transfers (FTP and HTTP) experienced large degradations of
performance because the policing in the ATM network prevented them from opportunisti-
cally using al of the link bandwidth. These effects, observed when applications were
selected individually for guaranteed-performance connections, generally extended to mul-

tiple-application policies as well.

There are two primary differences between the work-conserving RCSP scheduler and the
static priority scheduler used in Section 4.4. First is the addition of rate control. The work-
conserving RCSP scheduler maintains the notion of an eligibility time for each cell.
Roughly speaking, cellsthat arrive too early, according to their connection’ straffic param-

eters, are marked “ineligible’. Ineligible cells receive the lowest-possible scheduling pri-
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ority (even worse service than for best-effort traffic). The net effect is that any traffic sent

in excess of a connection’ s traffic specification will receive much-degraded service.

The second difference is the addition of admission control tests, performed at connection
setup time. These admission tests allow the ATM network to support performance guaran-
tees; a connection request is denied if its performance guarantees cannot be met or if its
acceptance could permit another connection’ s guarantees to be broken. It is therefore pos-
sible for avirtual circuit request to fail. We instructed our 1P-over-ATM implementation
to react to thefailure of aguaranteed-performance request by opening abest-effort connec-
tion instead.

As with the static priority scheduler, we performed tests both with individual application
policies (designated wc-telnet, we-ftp, et al.) and with multiple application policies
(we-1isp, we-av, and we-gos1). The applications selected for specia treatment by the
scheduler were the same as those for the static priority scheduler, but we set the per-appli-
cation traffic parameters using the values in Table 4-5. We present comparisons of these

policies with the default nogos policy.

4.5.1 Single-Application Work-Conserving RCSP Policies

We saw that interactive logins were almost unaffected by the use of work-conserving
RCSP scheduling. Applications that performed file transfer (FTP and HTTP) saw signifi-
cant increases in the time taken to complete their operations. Audio and video seemed to

benefit from the use of guaranteed connections.

When we sent telnet traffic using work-conserving RCSP (wc - telnet), we observed no
statistically significant effects on either the connect times or round-trip responsetimes. We
recall that the sp-telnet policy caused dightly shorter times for both metrics. The dif-
ference betweenthewc-telnet and sp-telnet casescan most likely be explained by
the effects of policing in the work-conserving RCSP scheduler. We recall that it degrades
the priority of ineligible cells, which would have retained their higher priority with a static
priority scheduler.
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Whenweused thewc - ftp policy, FTPfiletransfers suffered from significantly increased
completion times. At the 90th percentile, files took as much as thirteen times longer to
transfer than with the nogos policy. The effect at the median was somewhat less (a 15—
25% increasein file transfer times). We observed a similar effect on FTP session comple-
tion times. The median sessions took 5—7 times longer to complete, while at the 90th per-
centile, sessionstook 11-14 timeslonger to transmit all their data. These results, shown in
Figure 4-8, were a consequence of the policing and rate limiting of the RCSP scheduler.
With no QOS controlsin place, each FTPfiletransfer could potentialy use all of the avail-
able bandwidth along its path (subject to TCP' s congestion and flow control algorithms).
However, the work-conserving RCSP scheduler only guaranteed the performance of data
sent within the confines of its traffic specification. Data sent in excess of the traffic speci-

fication could have been delayed considerably.
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Figure 4-8. Effects of wc-ftp Policy on FTP File Transfer Times. Note that completion
times are shown on alogarithmic scale.

While detrimental to the performance of FTP, we expected that the policing provided by
the we-ftp policy and the RCSP scheduler would be useful to other applications which
could benefit from the network bandwidth that would otherwise be used by FTP. This
effect would manifest itself, for example, in lower telnet response times and Web page
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transfer times. We were, however, unable to find any statisticaly significant effects on

other applications.

In the same manner that the we-ftp policy limited the performance of FTP, the wc-
http policy throttled the performance of HTTP. Compared to the nogos policy, the
median file transfer time was increased by 12%-55%, while the 90th-percentile time was
increased by 36%—434%. We observed similar effects in the HTTP page transfer times,
which increased by 27-212% in the median and 68%-1494% in the 90th percentile.

Somewhat surprisingly, the we-audio policy had no statistically significant effects on
the loss rates. For packets actually delivered, however, the we-audio policy decreased
the rate of overdue audio data by 30—64%, though these improvements were only statisti-
cally significant for the app-svc configuration. These effects are illustrated in Figure 4-
9.
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Figure 4-9. Effects of wc-audio Policy on Audio Overdue Rate and L oss Rate.

When we used thewc -video QOS policy, we saw areduction in the video loss rate, from
an original lossrate of 1-2% to well under 1%. Theimprovement in loss rate was 54-87%.
However, the variances we observed were so large that even at 60% confidence, only the

svc policies showed statistically significant improvements.



4.5.2 Combination Work-Conserving RCSP Policies
As we expected, the effects of the multiple-application QOS policies were very similar to

the superposition of the single-application wc policies.

When we ran our workload using the we - 1 sp policy, Web browsing (HTTP) was gener-
ally slower (the 90th percentile of Web pageretrievalsincreased by 44-147%, adifference
of several seconds per page). Telnet performanceimproved slightly. With 90% confidence,
the 90th percent of round-trip times showed improvements for the app - svc case (only),
whereas all but the conv-svccache showed improvements with 60% confidence. The

delays were reduced by afew hundredths of a second (an 8-20% improvement).

Interestingly, the wc-av policy failed to produce any statistically significant effects on
audio or video loss or overdue rates. Given the magnitude of the effects of thewc-audio
and wc -video policies on the same applications, thisis perhaps not surprising; however,

our initial intuition led us to expect some significant performance improvements.

The effects of the we-gos1 policy were a combination of the individual application pol-
icies. Telnet traffic experienced some minor improvements in both connection setup time
and round-trip response time. At the 90th percentile, these speedups were on the order of
10-60 ms (5-15%) and 40—60 ms (13-25%), respectively. However, we only observed sta-

tistically significant differences for the app - svec configuration.

Bulk transfers under wc-gos1, throttled down by policing in the ATM network, saw
increased delays. The 90th percentile of FTP sessions took 21-53 seconds (71-171%)
longer. Similarly, the 90th percentile of Web page transfers increased by 0.7-3.4 seconds
(16-90%), although this degradation was only significant for scenarios with per-applica-

tion multiplexing.

4.6 Non-Wor k-Conserving RCSP

Applications using non-work-conserving RCSP exhibited effects similar to those of work-
conserving RCSP. Bulk transfer performance was improved over work-conserving RCSP
because the smoothing effects of the rate jitter control caused fewer cellsto be dropped in
the ATM network. We found that the policing effect of RCSP virtual circuits could be ren-
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dered less effective when there were enough guaranteed virtual circuits to cause admission
control tests to fail; this resulted in a number of bulk transfers being sent over unpoliced,

best-effort connections.

Thereisonly one difference between the work-conserving and non-work-conserving vari-
ants of the RCSP scheduler. We recall that the work-conserving variant can forward cells
that have arrived too early or too quickly, albeit at amuch lower scheduling priority. In the
non-work-conserving variant, these cells are buffered until they are once again compliant
with the traffic specification for their connection. This difference translates into increased

delays for sources that send data faster than their traffic specification.

4.6.1 Single-Application, Non-Wor k-Conserving RCSP Policies

For the most part, the use of non-work-conserving, jitter-controlled RCSP (nwc) had
effects similar to those with the use of work-conserving RCSP (wc). Although the per-
application policies succeeded in restricting the performance of bulk transfer applications,
we could find no statistically significant evidence that other applications were able to take
advantage of the resulting conservation of network resources. Interestingly, the perfor-
mance degradation with the nwc schedulers was not as severe as with the we schedulers,
due to the former’s traffic shaping helping to control buffer overflows. The continuous
media applications were, in general, helped by having their data sent over guaranteed con-

nections, suffering from less dropped or overdue data.

When telnet traffic alone was sent using guaranteed connections (the nwc-telnet pol-

icy), connect times were, for the most part, only slightly changed.

Thenwc- £tp policy had a somewhat counterintuitive effect on FTP traffic. As expected,
FTP file and session compl etion times were increased (the 90th percentile of file transfer
times increased by 680-742%, with FTP sessions taking 645-814% longer). However,

these effects were somewhat less than for the we - £tp policy, as shown in Figure 4-10.

This result ran contrary to our expectations. We expected FTP performance with nwc -
ftp to be worse than with the work-conserving wc- £ tp, due to the extra delays intro-
duced by jitter control. We investigated further and found that bulk transfers carried by
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Figure 4-10. Effects of nwc-£tp Policy on FTP Session Times. Note that the use of a
on-work-conserving RCSP variant (rightmost bars in each set of three) actually resultsin
less performance degradation than work-conserving RCSP (center bars).

work-conserving connections suffered from more dropped packets, due to buffer over-
flows. These overflows appear to have been caused by bursts of cells. The resulting drops
caused TCPtimeouts and retransmissions, and reduced the throughput sufficiently to offset
the effects of the lower delays. We did not observe these packet drops with the nwc sched-
uler; the jitter-controlled queues tended to smooth out large bursts at the entrance to the

ATM network, aswell asin intermediate switches.

In the same way that the nwc-ftp policy slowed down FTP transfers, the nwc-http
policy caused Web browsing to take more time. The 90th percentile of Web page transfers
increased from 3.8-4.0 seconds to 5.8-11.4 seconds, an increase of 53.6%—-185%. Aswith
the case of FTP described earlier in this section, the degradation of thenwc-http policy
on HTTPwas not as great asthat for wc-http. Thelatter, we recall, caused the 90th per-

centile of page transfer times to increase as much as fifteen timesin one configuration.

The nwc-audio QOS policy only had minor effects on audio traffic. We observed aver-
agelossrates of 0.12%-0.22% (areduction inthelossrate of 12%-52%). Only 1.7%—4.0%

of packets were overdue (areduction in the overdue rate of 33%-53%). However, the only
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statistically significant difference in the overdue rate wasin the app - svec setups. We saw

no significant changesin the loss rate. These effects are illustrated in Figure 4-11.
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Figure 4-11. Effects of nwc-audio Policy on Audio Loss Rate and Overdue Rate.

As we expected, the nwc-video policy lowered the loss rate of video data by providing
it with guaranteed performance. Thelossrates dropped from 1.1%—2.6% (with the original
nogos policy) down to 0.39%—-0.74%. Thisreduction corresponded to an improvement of
31-77%inthelossrate. Aswith our audio application, however, these effects were gener-
aly not statistically significant.

4.6.2 Combined, Non-Wor k-Conserving RCSP Policies

In general, we found that the multiple-application nwc policies had effects very much like
the combination of the individual application policies. An interesting side-effect we
observed wasthat, in some cases, large amounts of reserved resources caused ahigh failure
rate of guaranteed virtual circuit requests. These failures caused a significant number of
bulk transfersto be carried by best-effort virtual circuits, with no policing or jitter control,

which actually caused them to have lower transfer times.

The effects of thenwc -1 sp policy weresimilar to those of nwc-telnet andnwc-isp
combined. There were no significant effects on telnet latencies. HTTP applications saw

lower transfer times with the nwc - i sp policy than with the nwe-http policy, with the
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90th percentile of Web page transfersincreasing to 5.2—7.4 seconds, or an increase of 37—
97%. At first this result seems somewhat counter-intuitive. However, we note that the
nwc-1isp setups suffered from higher connection failure rates than the nwc-http sce-
narios (25-37% for nwc- i sp to 7%-32% for nwec - ht tp, depending on the multiplexing
and virtual circuit usage policies). These failures occurred because the network could not
provide the performance guarantees requested by new channels. The IP conversations cor-
responding to the failed V Cswere then sent using best-effort connections. Since these con-
nections were unpoliced, the conversations using them actually tended to receive better
performance (leading to lower transfer times) than they would have if the original guaran-

teed virtual circuit setups were successful.

The nwc-av policy produced few statistically significant effects on the performance of
the audio or video sessions (the overdue rate for app - sve setups was reduced, with 90%
confidence). However, we observed that the audio loss rates for application multiplexing
dropped by 32-47%, and the overduerate (for al configurations) was reduced by 18-55%.
This result was consistent with those produced by the nwc-audio, nwe-video, and

wec-av QOS policies, examined earlier.

Given the results of the use of single-application non-work-conserving QOS policies, the
effects of thenwc - gos1 policy werefairly predictable. Telnet experienced small, but not
significant, reductionsin both connect time and round-trip time (3-14% at the 90th percen-
tile). FTP suffered from increased file and session times (an increase, for example, of 52—
109% for the 90th percentile of session completions). We note that this performance deg-
radation is minor compared to that produced by the nwc - ftp policy. We believe that, as
seen with HTTP in the we-1sp policy, increased amounts of guaranteed traffic caused
some FTP conversationsto be carried by best-effort VV Cs due to admission control failures.
This in turn actually allowed FTP conversations to experience better performance than
they would have otherwise. Understandably the situation for HT TP traffic under thenwc -

gos1 policy wassimilar. We saw no significant effects on either the audio or video traffic.
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4.7 Conclusions

In this chapter, we examined the use of several different scheduling disciplinesto be used
in the queues of an ATM network. We looked at a best-effort policy (nogos), astatic pri-
ority scheduler (sp), and two variants of rate-controlled static priority scheduling (wc and
nwc). We explored the use of these schedulers to express preference for different network

applications, and measured their effect on application performance.

We saw in these experimentsthat static priority queueing in the ATM backboneis auseful
mechanism for giving preferential treatment to selected applications. However, allowing
bulk transfer applications (such as FTP or HTTP) to use high-priority virtual circuits can
have an adverse affect on interactive and continuous media performance. We have also
seen situations in which alarge amount of high-priority traffic can cause partial starvation
of serviceto the ATM network signalling system (especially without virtual circuit cach-
ing). As mentioned earlier, giving higher priority to signalling messages would alleviate

this particular problem.

We noted that policing of guaranteed ATM virtual circuits can be an effective mechanism
in controlling the performance of bulk transfer applications. However, our QOS policies
generated some counter-intuitive effects when the amount of guaranteed connectionsin the
ATM network was high. To wit, admission control failures resulted in IP conversations
being carried by (unpoliced) best effort connections, thus receiving better performance
than they would haveif they had been carried by guaranteed ATM connections. Webelieve
that apartial solution to this problem can be implemented by using (if available) a priority
of service even lower than “best effort”, for conversations that fail admission control tests
inthe ATM network.

We saw that bulk transfers can also benefit from the effects of jitter control, as this mech-
anism is an effective way of smoothing traffic, and helping to prevent buffer overflowsin
ATM queues. These buffer overflows in turn lead to packet losses, which in turn cause
TCP timeouts and retransmissions. In isolated tests we performed, we saw that the packet
loss rate was so high that the TCP fast retransmission and recovery mechanisms were ren-
dered useless.
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Based on our simulation results to date, we advocate using static priority schemes to
improve the performance of interactive (e.g. telnet) and multimedia (e.g. audio, video)
applications. Another additional, useful option is to use guaranteed-performance virtual
circuitsfor multimediatraffic. Both of these classes of QOS policiesimprove performance
for some selected applications without significantly impacting the behavior of others. The
actual choice of aQOS policy will likely depend on administrative concerns (for example,

determining which applications are “important” and should receive better service).

We close with some potential directions for future work. Some of the expected perfor-
mance effects failed to materialize, or did so without any meaningful level of statistical
confidence. Thus, we must make several observations about the effectiveness of our exper-
iments and methodology. Statistical significance was, in many cases, difficult to see, even
with confidence intervals as wide as 80%. The most effective remedy to this problem
would likely be to perform alarger number of experiments (difficult to do with our exper-
imental setup, because of the computational cost). Wefurther believe that thiswould allow

some of the secondary effects to become more visible.

We aso fedl that some of the results were potentially colored by a light workload in the
network; the intuitive idea being that some of these QOS policies could not make perfor-
mance “better” because it was already “good”. A larger amount of background traffic, as
well as a higher arrival rate of supported user applications, would likely make the effects

of different QOS policies more apparent.

The classification method we used to determine QOS parametersis somewhat rigid, in that
it depends on using fixed quantities (port numbers) in transport-layer headersto select one
of asmall, fixed set of QOS parameters. This scheme can encounter difficultiesin the event
of misclassification (for example, if avideo conversation were mistakenly classified astel-
net, rate control in the ATM network would render the resulting stream unusable). It also
has no capability to handle new or unknown traffic types. These limitations could poten-
tially be solved by more flexible mechanisms, perhaps adapting to the traffic load of acon-
versation or using additional information provided by applications.
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Finally, there is alarge space to be explored in setting and tuning the QOS parameters to
be used for different Internet applications. In particular, it would be interesting to compare
parameter settings for bulk transfers, since they can, in an uncontrolled network, opportu-

nistically use as much network bandwidth asthereis available.
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5 IPover ATM Multiplexing Policies

This chapter examines different IP-over-ATM multiplexing policies and their effects on
the performance of common Internet applications. Because | P has no network-layer con-
nections, there is no single, obvious mapping from IP conversations to ATM virtual cir-
cuits. An ATM-attached router can use ATM virtua circuits to carry individual
conversations, or it can choose to aggregate the traffic from several |P conversations onto
one connection. Our simulation results show that multiplexing traffic in thisway generally
improves the performance of file transfers (such as those required for small FTP or Web
files). In some cases, however, contention for buffer space or interactions with traffic
policing inside the ATM network can lead to performance degradations for longer file

transfers and continuous media applications.

5.1 Introduction

One of the most noticeable differences between IP and ATM is found in their respective
connection models. Because | P is connectionless, there is no one, unique mapping from |P
conversations onto ATM virtual circuits. One natural policy isfor ATM-attached routers
to give each IP conversation its own connection across the ATM subnet. However, other
approaches might multiplex the datafrom several conversations (for example, several TCP

conversations) together onto the same ATM connection.

Since many conversations are short (such asthose for amajority of Web pages), we expect
that aggregating them together will result in improved performance, dueto the elimination
of virtual circuit setup overheads. The time to establish a connection may well be alarge

fraction of the time needed to perform a short file transfer. Multiplexing a number of con-
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versations together means that only a single virtual circuit needs to be established for the
group, thus amortizing (or masking) the delays caused by virtual circuit setup.

The use of guarantees has some additional implications. Intuitively, we expect that multi-
plexing avirtual circuit among many | P conversations should yield better utilization of that
virtual circuit’s allocated network resources due to statistical multiplexing “within” the
connection. However, this greater utilization comes at the expense of a decreased level of

protection between conversations sharing the same ATM virtual circuit.

To see how this aggregation of traffic might be useful, we can examine the characteristics
of audio-video conferences on the Internet, as described in [Mah94b] and [Keshav94], and
consider their transmission across an ATM subnet!. In these conferences, only one user
speaks at atime (except for occasional transients). A single ATM virtual circuit could be
multiplexed among all of the involved UDP/IP conversations and used to carry the audio
for the entire conference. That virtual circuit would only require enough resources to sup-
port one sender at atime. By contrast, most users send video data continuously throughout
avideo conference; in order to protect the performance of each of the video streams, each
of the associated UDP/IP conversations would need to be assigned its own ATM virtual
circuit. The issue of resource sharing among related conversations isinvestigated in more
detail in [Gupta95a] and [Guptad5hb].

In Section 5.2, we briefly discuss some prior evaluations of 1P-over-ATM multiplexing
policies. Section 5.3 presents three multiplexing policies that we examined in this study.
We show our simulation results in two sections (highlights are listed in Table 5-1);
Section 5.4 addresses the merits of per-conversation and per-application multiplexing,
while Section 5.5 deals with per-router multiplexing as a separate case. Our conclusions

are presented in Section 5.6.

1. The conferences studied in [Mah94b] and [Keshav94] were sent using IP multicast. The support of 1P
multicast over an ATM network introduces additional issues and is beyond the scope of this study. The dis-
cussion in this example merely addresses the question of how to forward the data from an audio/video con-
ference across an ATM subnet.
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Multiplexing several 1P conversations over asingle ATM virtual circuit generally shortensfile
transfer times (especially short FTP or HTTP transfers).

When the ATM network does rate policing, unrelated | P conversations sharing an ATM virtual
circuit can interfere with each other, causing each other’s packets to be delayed. This effect can
result in somewhat longer file transfer times, especially for long file transfers.

Large amounts of multiplexing can cause large packet losses through buffer contention. This
effect manifestsitself in higher loss rates for multimedia applications.

Table 5-1. Summary of Multiplexing Results.

5.2 Prior Work

Several studies have aready examined the issue of multiplexing datagramsfor different IP
conversations over the same ATM virtual circuit. This research, however, was performed
in the context of best-effort virtual circuits. [Caceres92] explored severa different policies
for multiplexing TCP conversations in a wide-area ATM network carrying TCP/IP data
traffic. The study, as updated by [Caceres93], suggested that the best multiplexing policy
isto establish avirtual circuit per conversation (combined with a round-robin service dis-
ciplinein ATM switches); however, this policy was only considered for best-effort virtual

circuits.

Another study, based on Internet traffic measurements, found that many wide-area conver-
sations are short [Claffy94]. It recommended that such conversations be routed through a
mesh of Permanent Virtual Circuits (PVCs) in order to avoid the latency incurred by ATM
virtual circuit establishment. The study al so claimed that on-demand Switched Virtual Cir-
cuits (SVCs) are only necessary for conversationswith different priorities or QOS require-
ments, or for conversations whose high resource utilization would adversely impact the

performance of other traffic over the PV C mesh (such as high bitrate video).

Commercially available ATM LANS, such asthe FORE Systems ATM LAN described in
[Biagioni93], typicaly multiplex all communication between a given pair of hosts on a
singlevirtual circuit (either aPVC or an SVC). This approach has the advantage of imple-
mentation simplicity, but has the disadvantage of giving identical treatment to all packets

between a given host pair.
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5.3 Multiplexing Policies Examined

We examined three different IP-over-ATM multiplexing policies, which we describe here
in order of increasing levels of traffic aggregation. The first policy was per-conversation
multiplexing, abbreviated as conv. It assigns each |P conversation its own virtual circuit,
where aconversationisaTCP connection or aflow of UDP datagrams. Thispolicy isillus-
trated in Figure 5-1.

H1 } H3

R1 R2

sz \H4

LAN LAN
ATM Backbone

Figure 5-1. Per-Conversation Multiplexing. Each of the three |P conversations has its
packets transported over the ATM backbone by a separate ATM connection between the
routers R1 and R2.

Yvy

Aggregating all of the traffic from a single application between a pair of end hosts yields
the per-application multiplexing policy, known as app. This policy, whose operation is
shownin Figure 5-2, was evaluated in [ Caceres92]. It hasthe effect of reducing the number
of virtual circuit setups required, in the case of repeated TCP connections or UDP flows
from one host to another. For example, this policy would forward al of the HTTP connec-
tionsfor aWeb page onto asingle virtual circuit, because they all share the same | P source

and destination, and carry traffic for the same application.?

With the app multiplexing policy, arouter cannot know the exact number of |P conversa-
tionsthat will be sharing avirtual circuit (although we can describe them, asin the example
above). When the QOS policy uses guaranteed-performance virtual circuits, this intro-
duces the problem of not knowing, at connection setup time, the appropriate QOS to carry

this set of conversations. In our experiments, where it was applicable, we set the QOS for

2. An ATM-attached router can generally determine the application for which a packet carries data by
examining packet headers and looking for well-known TCP or UDP port numbers, as discussed in
Section 4.3.2.
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H1 I H3
HTTP | LI
R1 - R2
sz e H4
LAN LAN

ATM Backbone
igure 5-2. Per-Application Multiplexing. Thetop two conversations, both carrying HTTP

data from host H1 to host H3, share the same virtual circuit over the ATM subnet.
amultiplexed virtual circuit to be the same asthat for anon-multiplexed (per-conversation)
virtual circuit. This choice seemed appropriate as, due to the traffic patterns of the applica
tions we studied, there was usually only one active conversation per virtual circuit. How-
ever, in Section 5.4.2, we note some interesting transient effects which arose from the

sharing of resources between | P conversations.

Finally, we consider apolicy that aggregates all of the traffic between agiven pair of rout-
ersonto asinglevirtual circuit. Werefer to this policy as per-router-pair or per-router mul-
tiplexing, abbreviated as router. We shown an example in Figure 5-3. Per-router-pair
multiplexing is frequently used by commercial ATM LANSs such as the FORE Systems
network described in [Biagioni93]. Severa ATM network testbeds have used PV Cs with
this policy, such as XUNET Il [Fraser92] and BAGNET [Johnston95].

H1 H3

H2 H4

LAN LAN
ATM Backbone

Figure 5-3. Per-Router Pair Multiplexing. All of the data passing through router R1 and
router R2 (regardless of end hosts or traffic types) is forwarded over a single connection.
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Similar to the app multiplexing policy, router lacks knowledge about the conversations
sharing each virtua circuit. Unlikethe app policy, however, ATM connections supporting
the router policy arelikely to carry awide variety of different conversations, with many
active at any given time. Because our QOS parameters are designed to support specific
applications, we cannot assign any single QOS to this aggregation of traffic. Therefore, all

of our experiments with the router policy involved best-effort service only.

5.4 Per-Application and Per-Conver sation Multiplexing

In this section we compare the application performance under two different multiplexing
policies: per-application multiplexing (app) and per-conversation multiplexing (conv).
We performed these comparisons using a variety of QOS policies and both the svec and
svccache virtua circuit policies. We found that app multiplexing was helpful for oper-
ations that depended heavily on the speed of connection setup, such as telnet connection
setups and short bulk transfers. However, interactions between different | P conversations
sharing an ATM connection, even though not active simultaneously, caused long filetrans-
fers to take place more slowly in cases where the ATM network did traffic policing (the

nwc-* and we-* QOS policies).

5.4.1 Telnet

In general, the performance of the telnet application was marginally improved by the use
of per-application multiplexing, over a per-conversation policy. The per-conversation
policy yielded longer connect times and round-trip times. For example, when we ran the
sp- ftp policy, the 90th percentiles of connect timeswere longer by 40-80 ms (14-18%)
and the 90th percentile of round-trip times was lengthened by 3090 ms (12-30%). This
effect is shown in Figure 5-4. The average effect of the multiplexing policy was greater
with sve (as might be expected), but we only saw statistical significance in the svc-

cache case.

542FTP
An interesting effect on FTP performance was that the performance of short files and long

filestended to favor different multiplexing policies. Short files were generally transferred
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Figure 5-4. Performance Effects of app and conv Multiplexing on Telnet Performance,
sp-ftp QOS Policy.
in less time with app multiplexing but, in rate-controlled scenarios, long files took less

time to send using conv multiplexing.

Short FTP file transfers seemed to complete in less time when the |P-over-ATM service
used app multiplexing. This effect was most pronounced in the sp-ftp setups. In this
scenario, we saw that switching from app to conv multiplexing resulted in an increasein
file transfer time of 60—90 ms (27-33%) at the median and 110-120 ms (8-10%) in the
90th percentile. Comparisons of the performance of both FTP file transfers and session
transfers are shown in Figure 5-5 and Figure 5-6, respectively. We note that this effect is
proportionately more pronounced at the median of file transfer times, probably becausethe
connection setup time accounts for a larger fraction of the total transfer time for smaller

files.

In setups where FTP data conversations were policed by the ATM schedulers, however,
long files and sessions tended to benefit more from the use of per-conversation multiplex-
ing (or showed little change between the two multiplexing policies). Both thewc- £t p and
nwc-ftp setups showed this effect. We illustrate the nwc - £tp scenarios in Figure 5-7
and Figure 5-8; in both plots, the difference illustrated by the svccache barsis statisti-
cally significant.
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Figure 5-5. Performance Effects of app and conv Multiplexing on FTP File Transfer
Time, sp- £tp Policy.
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Figure 5-6. Performance Effects of app and conv Multiplexing on FTP Session Time,
sp-ftp Policy.

Intuitively, longer files (and sessions) do not benefit as much from not having to wait for
connection setup, because this one-time cost becomes small compared to the time needed
to transfer alargefile. However, the bursts generated by large files can interfere with other
files using the same virtua circuit. This phenomenon takes place in the queues inside the

ATM network. A burst of cells generated by a packet from one conversation can have the
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Figure 5-7. Performance Effects of app and conv Multiplexing on FTP File Transfer
Times, nwc - ftp QOS Policy.
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Figure 5-8. Performance Effects of app and conv Multiplexing on FTP Session Times,
nwc-ftp QOS Palicy.
effect of delaying the cells for a following conversation on the same virtual circuit. This
effect occurs because the combined traffic load momentarily exceeds the traffic specifica
tion for the ATM connection. The policing mechanisms in the ATM queues reshape the
traffic to correspond to the traffic specification, thus artificially delaying following cells
and increasing their end-to-end delay. In Figure 5-9, weillustrate this effect. We note that

81



this occurrence does not require that the two (or more) conversations be active simulta-
neoudly. It can easily involve the last packet of one conversation and the first packet of the

following, non-overlapping conversation.

(1 [ >
\N Arrival Time

Departure Time

|
Arrival Time

>
Departure Time

[] Cell from last packet of conversation 1 M Cell from first packet of conversation 2

Figure 5-9. Illustration of Interference Between Conversations Sharing an ATM Virtua
Circuit. This graph shows arrival and departure times from arate-controlled ATM queue.
In the top picture, two conversations share avirtual circuit. A burst of cells causes the
eligibility time of subsequent cells, from an unrelated conversation, to be pushed into the
future; the cells will leave later than in the bottom picture, in which conversation 2 is
assigned its own virtual circuit, without interference from conversation 1.

543HTTP

Similar to the case with FTP, we observed two different effects with Web traffic. For the
QOS policieswithout rate control (i.e. all of the sp-* policiesand the nogos policy), the
use of per-application multiplexing produced shorter item and page retrieval timesthan did
the use of per-conversation multiplexing. In Figure 5-10 and Figure 5-11, we compare the
transfer times with the two multiplexing policies; we found statistically significant differ-
ences for al metrics in the svc case and for the 90th percentile of item retrievals in the
svccache setup. Aswas the case with FTP, this effect is mostly likely due to the elimi-
nation of virtual circuit setups for repeated TCP connections from HTTP clients to their

SEIVErs.
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Figure 5-10. Performance Effects of app and conv Multiplexing on HTTP Item
Retrieval Time, sp-http Policy.
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igure 5-11. Performance Effects of app and conv Multiplexingon HTTP Item Retrieval
Time, sp-http Policy.

Conversely, in the case of QOS policies that implemented rate control (those using the we
and nwc schedulers), per-conversation multiplexing tended to reduce item and page trans-
fer times compared to per-application multiplexing. With the nwc-http QOS policy,

using per-conversation multiplexing resulted in significantly lower median and 90th per-
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centile item and page transfer times. Figure 5-12 and Figure 5-13 show the comparison

between transfer times with the two multiplexing policies.
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Figure 5-12. Performance Effects of app and conv Multiplexing on HTTP Item
Retrieval Time, nwc-http Policy.
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Figure 5-13. Performance Effects of app and conv Multiplexing on HTTP Page
Retrieval Time, nwc-http Policy.

A likely explanation for these performance effects is that, as we discuss in Appendix A,
much Web activity involves repeated, short TCP connections. As we saw for FTP in
Section 5.4.2, repeated TCP connections sharing avirtual circuit interfere with each other

in ATM rate controllers. Bursts of cells sent from earlier item retrievals will, through the
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ATM policing, cause the data for subsequent retrievals to be delayed (either through
degrading the priority or explicit queueing of ineligible cells). This effect would likely be
exacerbated if the Web browsers modeled had used multiple, parallel TCP connections

(currently done in contemporary Web clients to improve interactive response time).

5.4.4 Audio

We saw few significant differencesin either the audio loss rate or the audio overdue rate.
Thisresult islikely dueto the fact that, as with telnet, there is not enough locality of audio
conversationsfor the multiplexing policy to directly affect audio performance. In addition,

our workload has afairly small number of audio conversations active at any one time.

5.4.5Video
The performance experienced by our video application was similarly unchanged with
respect to the multiplexing policy we used. Wefedl that the reasons are the same asfor the

audio application (no locality between endpoints, with few active conversations).

5.5 Per-Router Multiplexing

This section deals with per-router multiplexing, and compares it to setups using per-con-
versation multiplexing. The results we saw were similar to thosein Section 5.4. Operations
whose compl etion time was strongly influenced by TCP connection setup were generally
sped up by the use of router multiplexing. However, long file transfers and sessions
were completed faster with conv multiplexing, most likely due to competition for buffers
along the path of shared virtual circuits. This assertion was borne out by the performance

of audio traffic, which also suffered from increased losses under the router policy.

There is one other notable difference between our tests in this section and those in
Section 5.4. Per-router multiplexing implies the use of best-effort virtual circuits only,
since al of the various QOS policies we examined are based on application-specific
parameters. Thereforethisevaluation, which compares per-conversation to per-router mul-

tiplexing, was considerably simpler becauseit only needsto consider the sp-nogos QOS

policy.
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The use of per-router multiplexing made it extremely unlikely that a new conversation
would require the establishment of an ATM connection. Due to the fact that each virtual
circuit carried an aggregate of many sources, it would almost never be idle long enough to
be timed out and torn down. Across all ssimulation runs with router multiplexing, there
were between 30 and 48 virtual circuit requests per run; we note that 30 virtual circuitsis
the minimum necessary to support a fully-connected mesh between all routers.® By com-
parison, the sp-nogos-conv-sve setups required between 162,000 and 174,000 vir-

tual circuit establishments over the course of arun.

5.5.1 Telnet

Intuitively, we would expect that the telnet clients would take less time to connect to their
servers. We did observe this effect, for both svc and svccache virtua circuit policies,
however we only saw a statistically significant difference for the svc case, which saw the
median and 90th percentile reduced by 62% and 57%, respectively. This effect is illus-
trated in Figure 5-14. The minor effectsfor the svccache setups can likely be attributed

to the effectiveness of the virtual circuit caches (we explore this subject in Section 6.6).
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Figure 5-14. Effect of router Multiplexing on Telnet Connect Times.

3. Our simulations had six sites, each with asingle router; for each router to set up a (unidirectional) virtua
circuit to the other fiverequired n(n—1) = 6(5) = 30 virtual circuits.
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Telnet round-trip times exhibited small, but not statistically significant, reductions of 0.5—
12% in the median and 14-15% at the 90th percentile.

552FTP
Wesaw dightly smaller medianfiletransfer timeswith router multiplexing (stetistically
significant only for the svc setup), most likely due to the elimination of most virtua cir-

cuit establishments. We present this result in Figure 5-15.
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Figure 5-15. Performance Effects of router Multiplexing on FTP File Transfer Times.

By contrast, when we enabled virtual circuit caching, we noted longer transfer times for
the 90th percentile of individual files, aswell asthe median and 90th percentile of sessions,
when we used per-router multiplexing. Although not constituting a statistically significant
difference, this performance degradation was 10-22%. We believe that because so many
virtual circuit setups were absorbed by the virtual circuit cache (97% of potential virtual
circuit requests were cache hits, aswe seein Section 6.6), the use of router multiplexing
gained little over conv multiplexing. However, long transfers felt the effects of competi-
tion for buffers along virtual circuits, which, with router multiplexing, are shared by

many different IP conversations.

We were able to partialy validate the latter assertion by examining the drop rates of cells

inthe ATM switch queues. When using conv multiplexing, we saw a cell drop rate (due
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Figure 5-16. Performance Effects of router Multiplexing on FTP Session Times.

to queue overflow) of 0.051%, averaged across al switch queues and multiple repetitions.
However, when we used router multiplexing, the drop rate rose to 0.064%. Although
this difference was not statistically significant, removing asingle outlying run (with conv
multiplexing) caused our teststo show that the drop rates were higher with per-router mul-

tiplexing, with 90% confidence.

553HTTP

The performance of Web clientswas affected by router multiplexing in much the same way
asthat of FTP clients. We saw that short sessions tended to compl ete faster with router
multiplexing due to the delay taken for conv multiplexing to set up virtual circuits. For
the svc case, the difference was approximately 140 ms at the median of both file and page

retrieval times.

These effects were not present when we enabled virtual circuit caching. Aswith FTP, long
Web files and pagestook longer to transfer with router multiplexing, although these differ-
ences were not statistically significant. The 90th percentile of HTTP files took 300 ms
longer to transfer, a difference of 29%. The 90th percentile of Web pages took 500 ms

longer with router multiplexing, a degradation in performance of 13%.
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5.5.4 Audio

The audio loss rate was dramatically higher with router multiplexing, in al cases. The
loss rate, which was less than 0.25% for conv multiplexing, jumped to over 1% with
router multiplexing, anincrease of 310-880%. We attribute this effect to the loss of pro-
tection between different |P conversations sharing the same virtua circuit (they compete
for buffer space in the ATM switches). Figure 5-17 illustrates the differencesin loss rates

(aswell as packet overdue rates).
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Figure 5-17. Effect of router Multiplexing on Audio Loss and Overdue Rates.

The overdue rate (for packets that actually made it all the way to their destinations) was
reduced somewhat, but not enough to make a statistically significant difference. We saw
reductions of about 20-32%.

5.5.5 Video

Video traffic was not significantly affected by the use of per-router multiplexing. We saw
adrop of 19% inthelossrate when svc virtual circuitswere used. However, when we used
svccache virtua circuits, switching from conv to router multiplexing doubled the
loss rate (from 1.1% to 2.2%). The exact reasons for these results are not immediately

apparent.
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5.6 Conclusions

In these experiments, we compared the performance of three different multiplexing poli-
cies. Thefirst (conv) assigns an ATM virtual circuit to every IP conversation. Another
usesan ATM virtual circuit for all traffic of agiven application type between apair of hosts
(app). Thelast uses virtua circuits like trunks, carrying all data between a pair of routers

(router).

We saw that increased levels of multiplexing (aggregating traffic on a per-application or
per-router basis) were beneficia to short TCP conversations. For small file transfers, the
initial setup (virtual circuit establishment and TCP connection setup) can account for asig-
nificant amount of thetime to complete the transfer. The elimination of somevirtual circuit

setups was, therefore, helpful to the performance of these short operations.

However, the performance of long transfers under increased multiplexing suffered in two
circumstances. First, app multiplexing was detrimental to long transfers, when the ATM
schedulers performed rate control. The policing performed by rate controllers allowed
bursts of cellsfor one conversation to delay the eligibility of cellsfor following, unrelated
conversations sharing the same virtual circuit. The result was an erosion of most of the
gains made by elimination connection setups; in some cases, app multiplexing actually

resulted in longer transfer times.

Per-router multiplexing was similarly detrimental to long file transfers, as the high degree
of aggregation allowed conversations to compete with each other for buffer space in
switches. A particularly hard-hit application was the audio application, which saw asignif-

icantly increased lossrate.

These results suggest that arouter should attempt to place long conversations on their own
virtual circuits, while allowing some degree of aggregation for shorter conversations. For
sometraffic types, such asaudio and video, it isgenerally safe to make the assumption that
the conversation will belong-lived, and thus place them on their own, dedicated virtual cir-

cuits.
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In some other cases (in particular Web and FTP), itisnot immediately clear how to accom-
plish this classification, given that current IP routers have no idea how long agiven IP con-
versation will last. We feel, however, that it is desirable to perform per-application
multiplexing for these applications to get the performance gains for small files, on the

assumption that users are more likely to notice performance differencesfor small transfers.

There are some natural areas for future investigations. Two types of policies, not investi-
gated in this study, would afford some additional flexibility. We have seen that only some
traffic types would benefit from multiplexing; it would therefore be useful to investigate
some hybrid policies that, for example, perform conv multiplexing for audio and video

data, while doing app multiplexing for Web traffic.

Another type of policy worth examining would be one of a class of dynamic policies that
could move conversations between different virtual circuits. An instance of this policy
would, for example, be able to move an FTP file transfer from a shared to a dedicated vir-

tual connection after a certain number of bytes had been transferred.
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6 Management of ATM Virtual
CircuitsUsed for IP

In this chapter, we investigate policies for the management of ATM virtual circuits used
for carrying IP datagrams. This issue arises because of afundamental difference between
the data forwarding models of IP and ATM. Because I P is connectionless, end hosts have
no way to indicate the start and end of IP conversations and thus cause ATM connection
setups and teardowns. The policies described and evaluated here provide the means for
ATM-attached routersto infer an appropriate course of action. We show simulation results
demonstrating that, under many circumstances, caching of idle ATM connections can sig-
nificantly improve the performance of Internet applications aswell as reduce the signaling
load in the ATM network.

6.1 Introduction

ATM-attached routers need to implement policiesfor the setup and teardown of virtual cir-
cuits because IP hosts have no means of performing (or requesting) these actions them-
selves. Such policiesmay betrivially ssmple, involving amesh of ATM Permanent Virtual
Circuits (PVCs), or more complex, requiring Switched Virtual Circuits (SVCs) to be cre-
ated and destroyed according to the needs of 1P conversations.

The use of performance-guaranteed virtual circuits raises additional problems. For
instance, the approach of creating a PV C mesh becomes less attractive in an ATM subnet
attempting to provide QOS support for IP traffic. A fixed set of PVCs cannot truly be
expected to provide the quality of service suitable for a possibly unknown traffic load.
Moreover, afixed mesh of QOS-guaranteed virtual circuitstiesup resources unnecessarily,

as the connections are not a priori known to be necessary.
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An important tradeoff, made more so by the implications of resource reservations, con-
cernsthelifetime of ATM virtual circuits. To reduce the effects of virtual circuit setup time
on latency, it may be desirable to cache unused SV Csin the hope that they will be needed
again (possibly for adifferent IP conversation). However, to keep the real-time utilization
of the network high, it is important to free up the resources alocated to SV Cs as soon as
they are no longer needed (releasing resources implies closing a connection, as, in our
model, avirtual circuit’sresources are associated with it throughout itslifetime). A virtua
circuit management policy must attempt to bal ance these two goal's, possibly incorporating

the characterizations of individual types of IP conversations as well.

Multiplexing asingle virtual circuit among multiple | P conversations introduces additional
virtual circuit management issues, with new implications for the fixed timeout strategies
suggested in [Caceres92] and [Claffy94] or the adaptive strategies proposed by [Lund95].
For example, a connection’ s lifetime may depend on the arrival patterns of traffic for mul-
tiple IP conversations, or on the relationships between different IP conversations multi-

plexed over that virtual circuit.

In Section 6.2, we present some prior work with virtual circuit management policies, both
in the form of research studies and actual implementations. Section 6.3 presents the three
different virtual circuit management schemeswe evaluated in this study. The three follow-
ing sections describe simulation results (key results are summarized in Table 6-1). In
Section 6.4, we present the effects of caching idle SVCs used for IP traffic. We present a
similar comparison for the special case of per-router multiplexing in Section 6.5.
Section 6.6 examines the behavior of the virtual circuit cache, and itsimplications for the

signaling load on the ATM network. Finally, we present our conclusionsin Section 6.7.

For 1P-over-ATM policies using per-application and per-connection multiplexing, caching idle
ATM connections provides significant improvements in application performance.

For IP-over-ATM policies using per-router-pair multiplexing, there were no significant differ-
ences between any of the virtual circuit management policies.

For |P-over-ATM policies using per-router-pair multiplexing, the performance of switched vir-
tual circuits with caching enabled was identical to that with permanent virtual circuits.

Connection caching dramatically reduces the number and frequency of ATM connection estab-
lishments, at a nominal overhead.

Table 6-1. Summary of Virtual Circuit Management Results.
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6.2 Prior Work

Thetimeto establish avirtual circuit may be relatively long, especialy in wide-area back-
bones with long propagation times. Therefore it may be useful to keep virtual circuits in
existence even when they are not actively being used to transmit data. A simple solution
that eliminates virtual circuit setup time atogether isto create amesh of PV Cs between all
pairsof endpoints. Thisapproach isrecommended by both [ Caceres92] and [Claffy94], but

has inherent scaling problems in the case of large ATM subnets.

When SV Cs are being established and torn down dynamically, it may be possible to amor-
tize the connection setup time by caching virtual circuitsin the hope they can be reused for
other IP conversations. The utility of such caching is dependent on the arrival and duration
of IP packets and conversations, as well as the characteristics of those conversations.
[Lund95] describes an adaptive strategy for computing virtual circuit holding times, which
involves gathering an empirical distribution of packet interarrivals. The approach isfairly

simple to implement and has shown promising results in trace-driven simulations.

The IP-over-ATM implementations in current production ATM LANSstypically use either
SV Cs with static timeouts or PV Cs. For example, the FORE System ATM LAN ties the
lifetime of virtual circuitsto ahost’s ARP cache, which resultsin atimeout of fifteen min-
utes. Thus, any virtual circuit which is idle for longer than fifteen minutes is torn down
[Biagioni93].

[Maher95] documents the ATM signaling necessary to support the IP-over-ATM service
of [Laubach94]. It recommends that when switched virtual circuits are used, they should
employ an idle timeout of at least twenty minutes. However, no justification for this value
isgiven; it seemstoo long for setups using per-conversation multiplexing, given the short

duration of many IP conversations.

6.3 Virtual Circuit Management Schemes

In this work, we examined three different virtual circuit management policies. The first
was a simple approach based on PV Cs, which we refer to ssmply as pve. Networks using
PV Csto carry IPtraffic (such asthe XUNET Il or BAGNET testbeds) typically have hard-
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wired connections which are pre-configured into the network. While this approach does
not offer much flexibility, it is simple and avoids any dependence on having a functioning
signaling protocol. In our experiments, we simulated PVCs by using SVCs that, once
established, were never torn down. We feel that this approximation is reasonable, as these
connection setups all took place early in the smulations and their effects were likely

masked by other startup transients.

Another policy examined was a simple SVC scheme (svc), in which virtual circuits are
established on demand and torn down after some period of inactivity. In all these experi-
ments, we set this timeout to ten seconds for all connections. We note that the timeout
values we used, for this policy and the following one, were set somewhat arbitrarily to
reflect durations we felt to be reasonable. We based the timeouts on our belief that I1P con-
versations (and gaps during them) tend to be short. However, we made no attempt, in this

work, to evaluate the benefits of longer or shorter timeouts.)

Thethird scheme we considered was avariant of the svc policy that alows caching of idle
connections (svccache). SVCsare established on demand as before. After acertainidle
time (ten secondsin our experiments), avirtual circuit becomes* unbound” fromits|P con-
versation. For a somewhat longer period of time (300 seconds in our simulations, as con-
figured), the virtual circuit is available to any IP conversation needing the connection
(including the one that used the connection originally). If no conversation was able to make

use of the unbound SV C by the end of the 300 seconds, it istorn down.

For anew IP conversation to be able to make use of acached ATM virtual circuit, the vir-
tual circuit needs to have a source and destination appropriate to the conversation. In the
case of QOS-aware poalicies, the cached connection also needs to have an appropriate set
of QOS parameters. In INSANE, each virtual circuit is tagged with the type of conversa-
tion that originally created it (e.g. telnet up, FTP down, audio). Currently, we require that

avirtua circuit have atypeidentical to that of anew request in order for it to be reused.

95



6.4 Effects of Caching on Switched Virtual Circuit Performance

In this section, we examine the effects of virtual circuit caching in IP-over-ATM setups
using switched virtual circuits. We compared the performance of different Internet appli-
cations using two virtual circuit management policies (svc and svccache) across two
different, applicable multiplexing policies (per-application and per-conversation), as well
asavariety of QOS policies.

We found that the FTP and HTTP applications showed significant improvements in file
transfer time when virtual circuit caching was enabled. Because both applications transfer
bursts of (typically) small files, eliminating the overhead to establish an ATM connection
was demonstrably beneficial to application performance. The multimedia applications
(audio and video) showed performance improvements in only a few cases, probably

because their conversations were relatively long-lived.

6.4.1 Telnet

We found that, in almost all cases, the use of a cache of idle virtual circuits significantly
reduced the connect time for new telnet conversations. This fact is unsurprising, since the
telnet connect time was entirely dependent on the overhead of setting up a TCP connection.
The wc-telnet scenarios were typical, in which we saw the setup times decrease by
158-165 ms (69—70%) at the median and 134-142 ms (41-42%) at the 90th percentile.
This effect is shown in Figure 6-1.

In comparison, the effects on telnet round-trip times were less visible. Only a few setups
exhibited significant changesto the distributions of response times; all those that did, how-
ever, demonstrated that the use of svccache virtua circuits was successful inimproving
telnet performance. Figure 6-2 showsthe effectsinthenwc - telnet case, which showed
a 90 ms improvement (3-8%) at the median. This represented a significant differencein

the case of per-conversation multiplexing, but not app multiplexing.

6.42FTP
In a variety of circumstances, FTP performance was significantly improved when we

enabled ATM connection caching. A simple casewasthe sp - £ tp setup, whoseresultsare
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Figure 6-2. Performance Effects of Virtual Circuit Caching on Telnet Round-Trip Times,
nwc-telnet QOS Policy.

pictured in Figure 6-3 and Figure 6-4. In these scenarios, the median file transfer time and
90th percentile of session times showed statistically significant improvements of 13-17%
(34—61 ms) and 14-20% (298-466 ms), respectively.

Significant differences surfaced primarily when we used conv multiplexing. In the we -

ftp setup, for example, file transfer times decreased by 27% at the median (0.13 seconds.

97



2 T T
90th Percentile, sve 1
Median, svccache
) 90th Percentile, svc
e Median, svccache &
é 15 + i
s
£
|_
o 1+ i
M)
&
|_
Q@
L_L B -
o 0.5
m
0

app conv
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Figure 6-4. Performance Effects of Virtual Circuit Caching on FTP Session Times, sp-
ftp QOS Palicy.
The median session time was shortened by 1.8 seconds (a 10% improvement). All of these
gainsrepresented statistically significant differences. The differenceswith app multiplex-
ing were not statistically significant, and had much smaller values (the median file and ses-
sion times improved by only 0.03 and 0.87 seconds, respectively). We illustrate the

contrast in session completion times in Figure 6-5. These results seem reasonable, as we
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would expect that the connection caches would be more effective (and more necessary)

without aggregation of multiple IP conversations into the same virtual circuit.
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Figure 6-5. Performance Effects of Virtual Circuit Caching on FTP Session Times, wc -
ftp QOS Palicy.

6.43HTTP

As with FTP, application-level Web performance was generally improved by the use of
virtual circuit caching. One of the more apparent improvements was in the nwc-http
setup, which saw statistically significant differences in item and page transfer times for
both app and conv multiplexing. Median item transfer times improved by 120-259 ms
(16-36%) and the median page timesimproved by 299-383 ms (22—32%). We show these
gainsin Figure 6-6 and Figure 6-7.

We note that, in the cases of both HTTP and FTP, we observed no interference between
different conversations using a cached virtua circuit, as we did with app multiplexing in
Chapter 5. We recall that, with the rate-controlled service disciplines, bursts from long
bulk transfers could cause subsequent transfers to be delayed, even if they were not simul-
taneous. There were no analogous effects with svccache, because the ten-second idle
timeout (before avirtual circuit could be reassigned to a new conversation) was enough for

the rate controllers to “forget” about the effects of prior traffic.t
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Figure 6-7. Performance Effects of Virtual Circuit Caching on HTTP Page Retrieval

Times, nwc-http QOS Palicy.

We note that Persistent Connection HTTP (P-HTTP) [Padmanabhan94] reduces the
demand for TCP connections, because it can transfer multiple Web files over asingle TCP

connection. This protocol would probably diminish the benefits of connection caching,

1. The implementation of INSANE's RCSP rate controllers allows for each queue to maintain up to two
seconds' worth of buffering and rate control information. Ten seconds of idle time is more than enough to

flush al the state from the rate controllers.
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because each Web page would require fewer TCP connections, and hence present fewer
opportunities for caching to improve performance. We did not, in this study, experiment
with the effects of a P-HTTP application. Our intuition, however, says that the combined
deployment of P-HTTP and connection caching would reduce file and page times at |east
as much as either of them used separately.

6.4.4 Audio
For the most part, we observed no significant effectsin audio performance arising from the

use of virtual circuit caching.

In some cases, however, we did observe large, statistically significant reductions in the
audio loss and overdue rates when we used the svccache policy. One such class of
setups was formed by those using the sp-gos1 QOS policy, in which we saw aloss rate
of 1.11-1.47% decrease to 0.76-0.78% with the introduction of caching. The overduerates
similarly decreased from 2.71-3.38% to 1.42-2.08%. We show this improvement in
Figure 6-8.
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Figure 6-8. Performance Effects of Virtua Circuit Caching on Audio Loss and Overdue
Rates, sp-gos1 Policy.

The setups using the sp-av and we-http QOS policies showed similar improvements
with caching. The reasons for these performance gains are not immediately apparent. Intu-

itively, we would not expect audio performance to be significantly affected by the use of
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the virtual circuit caching policy because its effects at connection setup time should influ-

ence only asmall part of the lifetime of any one audio conversation.

6.4.5 Video

The enabling of virtual circuit caching had asimilar effect on the performance of the video
applications. In most cases, the svccache policy offered no statisticaly significant
improvements over the svc policy. However, in a handful of cases, we observed lower
loss rates when connection caching was used, together with the conv multiplexing policy.

For example, in the sp-ftp scenarios, we saw the video loss rate decrease from 4.64—
8.11% to 4.09-4.47%, as shown in Figure 6-9.
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Figure 6-9. Performance Effects of Virtual Circuit Caching on Video Loss Rate, sp-ftp
QOS Palicy.

As with improvements to audio performance, the reasons for these differences are not
immediately clear. One possible explanation may lie with the lower amount of signaling
traffic (sent at a higher priority than the default, best-effort data). Few signaling messages
can cause data sent with the default QOS to receive better treatment, because there isless

competition from higher-priority signaling traffic.

6.5 The Special Case of Per-Router Multiplexing
This section examines the effects of connection caching in scenarios that used per-router

multiplexing. The experimental results were not terribly interesting, in that connection
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caching provided few benefits. We somewhat expected this outcome. Given the fact that
connection establishments under per-router multiplexing are rare events, it is difficult for
different virtual circuit management policies to have much impact on application perfor-

mance.

We note that with router multiplexing, the total stream of aggregated traffic sent over
any given virtua circuit contained few idle periodslonger than the ten-second idle timeout
for teardown (svc) or caching (svccache). From Section 5.5, werecall that, for any sce-
narios using router multiplexing and sve VCs, we saw at most 18 more connections
than were needed for full connectivity, over the course of an entire simulation. Thus, there
were at most 18 idle virtual circuit timeouts over the 4000-second run, very few opportu-

nities for any differencesin virtual circuit management policies to have an influence.

Thisfact can account for two results. First, the scenarios using pve and svccache poli-
ciesyielded exactly identical performancefor al metrics. As explanation, we note that vir-
tual circuits were never idle long enough in the caching scenarios to be torn down. In all
cases, another packet would arrive to reactivate a cached connection before it was torn
down (i.e. within five minutes). Thus, except for asmall amount of bookkeeping in routers
(whose effects on network performance were not modeled), the entire network behaved

identically to the case of permanent virtual circuits.

The second result was that there were no significant performance differences among any
of the virtual circuit management policies when we used per-router multiplexing. Given
the results from Section 5.5, thisis hardly surprising. There were simply not enough peri-
ods of idletime (and subsequent virtual circuit teardowns) for caching (or the use of PV Cs)

to effect much improvement over the case of uncached SV Cs.

6.6 Cache Effectiveness

The virtua circuit cache returned surprisingly high hit rates. It decreased both the number
and rate of virtual circuit setups required by more than an order of magnitude. Although
the cache imposed a certain overhead in terms of additional virtual circuits required, we
judged this cost to be small.
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For the nogos setups (where all virtual circuits were treated identically for the purposes
of being ableto carry traffic), we observed cache hit rates of 97—98%. For the static priority
schemes and most of the QOS poalicies using any form of RCSP, the virtual circuit caches
in the routers were able to absorb 95% of the virtual circuit setups with app multiplexing

and approximately 92% with conv multiplexing.

Some of the QOS policies (wc-isp, we-gosl, nwc-1isp, and nwc -gos1) approached
or surpassed the capacity of the ATM network to support guaranteed connections, which
resulted in alarge number of virtual circuit establishment fail ures.? Because there was not
alarge pool of idle virtual circuitsto support new real-time connections, the virtual circuit
cache was significantly less effective. The hit rates in these scenarios were 65-69% for

app multiplexing and 56-59% for conv multiplexing.

An important implication of the high cache hit ratesisthat it drastically reduces the rate of
signaling requests made (by ATM-connected routers) by one or two orders of magnitude.
The ability to reduce the number of virtual circuit setups can be crucial; [Schmidt93] and
others have cited high signaling rates as potential bottlenecks for high-speed ATM net-
works.3 Toinvestigate this effect, we collected the number of virtual circuit establishments
performed each second at two of the six routers?, aswell astotals across al routersin the

network.

In our simulation runs, nogos - conv-svec scenarios required an average of 168,936 vir-
tual circuits. Over a 4000-second simulation run, the six routers in our network therefore

performed an average of 7.0 establishments per second. The two busiest routers recorded

2. Werecall that avirtual circuit has resources allocated to it throughout its lifetime, even when idle. These
resources, such as scheduling priority and bandwidth, are unavailable to other guaranteed-performance con-
nections, although they may be temporarily exploited by best-effort traffic if unused by their “owning” con-
nection.

3. Although these figures are not necessarily indicative of current ATM WAN virtual circuit setup perfor-
mance, we note that XUNET Il needed 300 ms (!) per hop to establish avirtual circuit. An ATM LAN based
on an early version of the Synoptics (now Bay Networks) LattisCell 10114 switch took 70 msto establish a
switched virtua circuit over aone- or two-hop path.

4. Dueto the Zipf’'s Law distribution for selecting FTP and Web serversin the user workload generator, the
distribution of traffic is not symmetric. We elected to measure the call setup rates at the sites containing the
two most common servers, on the rational e that this choice would give usthe “worst case” (i.e. highest) call
setup rates.
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apeak call setup rate of 37 cals per second. By contrast, the nogos - conv-svccache
setups required only 4337 virtual circuit setups, on average. This translates to an average
setup rate of 0.18 establishments per second per router, with an observed peak of 25 calls

per second.

The effect with per-application multiplexing was similar. The nogos -app-svc scenar-
ios required, on average, 71,136 connection setups (3.0 establishments per second per
router). When we enabled virtual circuit caching, we observed an average of 1424 estab-
lishments per run (each router performed an average of 0.06 setups per second). However,
the peak rate of connection establishments was the same regardless of whether virtual cir-

cuit caching was in use: 15 connections per second.

Another quantity of interest when evaluating the usefulness of virtual circuit cachingisthe
maximum number of virtual circuitsin use at any onetime. A large cache may be imprac-
tical if it requires alarge number of idle circuits to be useful. Thus, we measured the max-
imum number of virtual circuits used by each of the routers, sampled at one-second

intervals.

In the nogos scenarios using per-application multiplexing, we observed a maximum of
162 connectionsin use at any time with no caching and at most 200 connections used with
caching enabled, an increase of 24%. To run the per-conversation multiplexing scenarios,
we needed a maximum of 341 virtual circuits from arouter with no virtual circuit caching
and 472 virtua circuits with caching enabled, a*“cost” of 38%.

Although we did not keep statistics on virtual circuit usage in the ATM switches, we note
that we configured our switches to support a maximum of 8192 virtual circuits per port,
and that we saw no evidence of any call setup failures dueto alack of virtual circuit iden-

tifiers.

6.7 Conclusions
In this chapter, we examined the effects of three ATM virtual circuit management policies

on end-to-end Internet application performance. We looked at a policy using permanent
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virtual circuits (pvc), asimple switched virtual circuit policy (svc), and avariant which

cachesidle switched virtual circuits for later reuse (svccache).

Wefound that caching idle ATM connections provides significant improvementsin appli-
cation performance, in scenarios using per-application and per-conversation multiplexing.
We observed no significant effects in setups using per-router multiplexing; however, we
found that, with the static timeout values we chose, the operation of the network with
cached SV Cswas identical to that with PV Cs. Finally, we examined the signaling load at
some of the ATM-attached routers and saw that connection caching dramatically reduced
the number of call setups required, in exchange for a small number of additional virtual

circuits.

Based on these results, we believe that circuit caching should be implemented in I P-over-
ATM networks using switched virtual circuits. Given the short duration of many IP con-
versations, the elimination of virtual circuit setup overheads can significantly improve end-

to-end application performance and reduce the signaling load on the ATM network.

We note several possible areas of further study. A natural issueto raiseisthat of thetime-
out values used to teardown virtual circuits (or to cache them, when appropriate). While
we only used afixed (“reasonable”) set of values, it would be useful to investigate arange
of different timeout values. Wefeel, in particular, that the current timeout values arelonger
than necessary for many bulk transfer applications such asFTP or HTTP. Telnet, however,
may benefit from longer timeouts, so that virtual circuits are not torn down during periods
of “user think time”. This observation raises the possibility of setting timeouts on a per-

traffic-type basis, or a dynamic scheme such as that proposed in [Lund95].

Finally, keeping a cache of idle virtual circuits raises some pricing issues, which we did
not addressin this study. In particular, it is not clear who should “pay” for resources, such
as network bandwidth and scheduling priority, which are allocated to idle, cached connec-
tions, and thus unavailable for other guaranteed connections. Modifying or releasing the
resources allocated to an idle connection might reduce the penalties associated with cach-
ing. However, this would require a somewhat richer interaction with the ATM network

than our models currently support.

106



7 Conclusions

In this dissertation, we have investigated three issues in the design of IP-over-ATM sys-
tems. We have examined various alternativesfor policies addressing these issues, and eval-
uated their impacts on end-to-end Internet application performance, via a large-scale

network simulation.

In Section 7.1, we summarize the findings and contributions of this research. We present
some possible areas for future work in Section 7.2. Lastly, we present some final remarks
in Section 7.3.

7.1 Summary of Contributions
In Chapter 1, we motivated our research by noting the growing popularity of Asynchro-
nous Transfer Mode (ATM) networks, and the desire to use them as an effective part of the

global Internet, running the Internet Protocol (I1P).

We provided some background on both IP and ATM in Chapter 2. We outlined some of
the contrasts between the two types of networks, in particular the connection models, the
differing support for quality of service and performance guarantees, and the differencesin
types of packets. From the resulting research issues, we sketched out a space of possible
IP-over-ATM policies to be implemented by ATM-attached hosts and routers. This space
consists of policies for using ATM quality of service, multiplexing, and connection man-

agement to support Internet applications.

Chapter 3 described our methodol ogy. We outlined the set of IP-over-ATM policies under
investigation. Next we described a set of simulation experiments, which measured the per-

formance of common Internet applications (expressed using metrics such as file transfer
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times or packet loss rates). These measurements were performed on applications as they
ran in alarge, smulated IP internetwork with an ATM backbone. We showed how we
varied the IP-over-ATM policies to investigate their effects on application performance.
Finally, that chapter described the design and implementation of anew network simulation
tool, the Internet Simulated ATM Networking Environment (INSANE).

In Chapter 4, we examined a variety of ATM scheduling disciplines, including First-
Come-First-Served, Static Priority, and two variants of Rate-Controlled Static Priority. We
constructed a number of policiesfor using these scheduling disciplinesto give preferential
treatment to different Internet applications, and measured the end-to-end performance
effects. We found that a Static Priority scheduler can be effective at giving preference to
any application, but at the risk of starving out low priority traffic. We looked at the effects
of RCSP's traffic policing, and found that, although it could prevent applications from
monopolizing network resources, the benefits derived by other applications were uncer-
tain. Finally, we saw that distributed jitter control (such as that provided by RCSP sched-
uling) was useful in controlling losses in long TCP bulk transfers. From these results, we
concludethat a Satic Priority scheme (if used carefully) may be the most effectivein offer-

ing differential treatment of various traffic types.

We examined three different IP-over-ATM multiplexing policies in Chapter 5. Each
aggregated increasing amounts of traffic onto individual ATM virtual circuits. We saw the
performance of small filetransfersimprove with aggregation, due to the elimination of vir-
tual circuit setup overheads. Long files, however, fared better on their own individual con-
nections in networks that performed traffic policing, due to an undesirable interaction
between different transfers sharing the same ATM connection. Finally, we saw that, at very
high levels of aggregation, contention for buffers increased packet drops for loss-sensitive
datasuch asaudio. At least for short transfers, | P conver sations should be aggregated onto
common virtual circuits, using a policy such as per-application multiplexing. The optimum
strategy for longer transfers depends somewhat on the scheduling policy in useinthe ATM

network, but in general placing them on their own connections is preferable.

108



Finally, in Chapter 6, we looked at three policies for managing ATM virtual circuits being
used to carry Internet traffic. Thefirst two policiesused ATM SVCsto carry IP traffic. In
thefirst, virtual circuits were created on demand and torn down when idle. In the second,
ATM-attached hosts and routers kept a cache of idle connections, which could be reused
for other, potentially unrelated |P conversations. We found that in networks doing either
per-application or per-conversation multiplexing, applications benefited from the use of
virtual circuit caching. Moreover, connection caching was beneficia to the network as
well, asit dramatically lowered the volume and frequency of signalling traffic. From these
results, we recommend ATM networks using switched virtual circuits implement connec-

tion caching.

Thelast virtual circuit management policy we examined used Permanent Virtual Circuits,
which are useful in networks using per-router-pair multiplexing. Wefound that in such net-
works, there were no significant differencesin application performance between any of the

virtual circuit management policies we studied.

7.2 Future Work
There are, of course, many areas for future work in the area of I1P-over-ATM systems. We

touch on some of them briefly in this section.

Asthe Internet continues to evolve and grow, so will its workload. New applications con-
tinue to be deployed, each with their own traffic patterns and characteristics. Simulations
or analysisof future networkswill need to take these devel opmentsinto account when con-

structing aworkload to be used for evaluation purposes.

In addition, new network protocolswill have some implications on our work. For example,
IPv6 includes support for “flows”, which can be used to identify a stream of related packets
at the network layer. Conceivably, thisinformation could be used in our schemeto identify
particular | P conversations with less overhead and more reliably than our current scheme,

which is based on using port numbers and other higher-layer identifiers.

Real-world ATM networks will likely have their own idiosyncracies and bottlenecks.

Studies targeted towards the characteristics of a particular network may yield dlightly dif-
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ferent (but hopefully not too different) results from those obtained in our idealized ATM

environment.

Each of the three design issueswe investigated has possibilities for future investigation, as
well. Our examination of different QOS policies could be extended to include a study of
different sets of traffic parameters for each type of application. Some other methods of
specifying performance guarantees could be attempted, including measurement-based

schemes in routers or the use of an explicit signalling protocol such as RSVP.

There are other multiplexing policies that could be investigated, beyond those we studied
here. It would also be useful to investigate the implications of having some hybrid policies
in anetwork (for example, aggregating many short conversations together, but sending the

data for long conversations on their own connections).

Finally, a study of different timing constants for our virtual circuit management policies
would be useful—either sets of static timeouts (perhaps set on a per-application basis) or
adynamic timeout scheme. Aswith multiplexing, it could be interesting to investigate the
effects of hybrid schemes. One example would be to send short conversations on perma-
nent virtual circuits, but to send long conversations on their own, dedicated, on-demand

connections (assuming a router could determine the length of a conversation in advance).

7.3 Some Final Remarks

Whilethe evaluations performed in thisresearch yielded someinitial resultsand guidelines
for IP-over-ATM policies, the utility of these policies will ultimately depend on the traffic
workload and administrative policies of each individual site. We believe that, in order to
gain maximum benefit from the implementation of these policies, vendors implementing
them should provide each site the ability to define and evaluate the policies to be used on

that particular site’s networks.

We believe that IP and ATM networks can interoperate effectively; the issues we
addressed in this research explored the space of possible policies governing their interac-
tions. The policieswe investigated were designed to try to gain the benefits of each type of

network, while minimizing their respective weaknesses. We believe that similar opportu-
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nities exist for other situations in which two dissimilar networks meet, and must be made

to work together.
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A An Empirical Model of HTTP Traffic

We have developed an empirically-derived model of HTTP network traffic, designed to
provide a synthetic workload to a simulation of a wide-area |P internetwork. This model
captures a variety of aspects of World Wide Web network activity. At the lowest level, it
describes the sizes of individual Web files; these files combine to produce multi-file doc-
uments, separated by “user think time”. At the highest level, our model describes the
browsing behavior of users, both within avisit to asingle Web server and between differ-
ent Web servers. Our model is based on network packet traces, and uses analysis and heu-

ristics to derive information about files and higher-layer units of information.

A.1 Background

The World Wide Web (frequently shortened to VWWWV or Web) is a collection of documents
and services availableto the global Internet. Servers furnish these documents on request to
clients (also known as browsers). Each document (sometimes called a page) may consist
of anumber of files. For example, a multi-file document could consist of text represented
using the Hypertext Markup Language (HTML) [Berners-Lee95], along with some
number of images to be displayed “inline” with the text.

The Hypertext Transfer Protocol (HTTP) [Berners-Lee96] is a request-response protocol
for transferring the files making up the parts of Web documents. Each transfer consists of
the client requesting afile from the server, then the server replying with the requested file
(or an error notification). Both the request and reply contain identification and control
information in headers. HTTP uses the services of TCP [Postel81b] for reliable transport
across the unreliable global Internet. In current versions of HTTP, each TCP connection

can be used for at most one HTTP retrieval. Future versions of HTTP, as described in
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[Fielding96], incorporate the work of [Padmanabhan94] and [Mogul95], which propose

the reuse of TCP connections for multiple retrieval s between the same client and server.

We will occasionally take several liberties with terminology. Strictly speaking, Web doc-
uments can be transferred by means other than HTTP. For example, the File Transfer Pro-
tocol FTP [Postel85] can be used to serve documents where HT TP cannot be deployed for
administrative reasons and FTP servers exist already. Thus, the terms “Web server” and
“HTTP server” are not strictly synonymous, though we will frequently use them inter-
changeably. Our usage of theterms“Web browser” and “HTTP client” issimilar. Contexts
in which differentiation is required should be easily apparent.

A.2 Prior Work

In this section, we summarize three approaches that have been taken in attempting to char-
acterize Internet applications. Two methods, server logs and client logs, have been used in
prior investigations of the World Wide Web. The last approach, traffic traces, has been
used for past studies of a number of other Internet applications, such as file transfers and

remote logins.

A.2.1 Server Logs

Most Web servers keep logs of the requests and files they have served, for reasons ranging
from operational monitoring to collecting demographic information. A workload model
can be created by processing the logs of arunning Web server. In some sense this approach
isthe easiest to take, because the machinery for collecting data already exists and, in fact,
thedataisvery likely being collected anyway. Indeed, for some studies, such as[Mogul95]
and [Arlitt96], it is appropriate to model a stream of HTTP requests arriving at a Web

Server.

However, there are two principa drawbacks to this approach. One large disadvantage of
using server logs is that they cannot easily capture user access patterns across multiple
Web servers. In particular, it may be difficult to make any determination about the locality
of references during any given user session. Another shortcoming isthat current server log

formats do not capture any aspects of HTTP overheads, such as protocol headers.
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A.2.2 Client Logs

[Crovellag6], [Cunha95], and [Catledge9d5] relied on data gathered by instrumenting the
NCSA Mosaic browser [Mosaic95] to log all retrievals made during Web user sessions.
The instrumented systems were in public computing laboratories in academic environ-
ments. These studies were primarily concerned with investigating various characteristics
of Web accesses. However, based on these types of measurements, it would be possible to

construct a corresponding model, suitable for generating a synthetic workload.

Unlike server logs, this approach captures user accesses between multiple Web servers
quitewell. In addition, it allows the characterization of the effects of client-side caching of
documents (or parts of documents). However, thistechnique requiresthat browsers be able
to log their requests or, more likely, the availability of source code for the Web browser so
that such logging can be added. Source code for newer Web browsers, including the pop-
ular Netscape Navigator [Netscape96], is generally not available. In addition, supporting a
variety of browsers would be difficult if modifications for logging needed to be made to

each one.

A.2.3 Packet Traces

Another method of gathering workload data consists of analyzing packet traces taken from
asubnet carrying HT TP traffic, typically an Ethernet or other broadcast-style LAN.L From
the packet traces and knowledge about the higher-layer protocols used, traffic analysis can
yield amodel of the behavior of the original application. This approach has been used in a
number of other traffic studies, such as[Céceres91] and [Paxson91], that predate the Web.
[Stevens96] analyzesthe packets arriving at an HT TP server and presents some interesting
statistics and observations. [Danzig91] describes a library of traffic models for common
(circa1991) Internet applications, which, in fact, we used for several of INSANE’s other
simulated applications. [Paxson94a] additionally describes analytic models derived from
traffic traces, which have amore compact representation than purely empirical modelsand

can be parameterized to reflect specific networks more accurately.

1. Itispossible to use this methodology on a point-to-point link acting as a transit network, but such oppor-
tunities are less common.
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This approach eliminates the principal disadvantages of the two previous methods men-
tioned. However, it too introduces drawbacks. Werecall that models based on application-
level logs can easily record higher-level information such as specific filesrequested, HTTP
message types, and document types. While such information could in principle be gleaned
from a packet trace, it would involve considerable effort in reconstructing the contents of
each TCP connection. In addition, the effects of client caching of documents are more dif-
ficult to ascertain, since only cache misses generate network traffic detectable by a packet

trace.

A.3 Methodology

We chose to use a packet trace-based approach for our model, principally because it
allowed us to capture the behavior of individual users and we would be able to use this
methodology with any popular, currently-deployed HTTP clients. While this approach
loses higher-level information such as the actual files accessed, we felt that such a charac-

terization is not essential to a network workload model.

We used the freely-available t cpdump packet capture utility [Jacobson95] running on a
DEC Alpha 3000/300 to record packet headers on a shared 10 Mbps Ethernet in the Com-
puter Science Division at the University of California at Berkeley, during four periods in
late 1995. This procedure saved the TCP and | P headers of each packet, aswell as a small

number of payload bytes. These data were saved to disk for off-line processing.

The subnet examined is a stub network (no transit traffic), one of a dozen or soinusein
the Computer Science Division. There are approximately one hundred hosts on this subnet;
the majority of them are desktop UNIX workstations, each principally used by a single
user. The user community consists primarily of Computer Science graduate students.
While no statistics are available on the relative popularity of different Web clientsused in
this environment, operational experience suggests that the prevalent one is Netscape Nav-
igator [Netscape96]. There are also several Web servers on this subnet, associated with

various research groups.
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Most HTTP servers bind to a well-known TCP port (port 80).% By looking for all TCP
packets to or from this well-known port, we captured what we believe is the vast majority
of HTTP traffic. Table A-1 summarizes our traffic traces. The first three traces were col-
lected asapart of an effort to examine varioustypes of network traffic (not just HT TP traf-
fic); the packet counts from these traces include only those packets attributable to HTTP.
The last traffic trace collected HTTP packets only. From these streams of packets, we

extracted those comprising HT TP connections originating from clients on the tracing sub-

net.
Number of HTTP
Start Time End Time Packets
Tue Sep 19 16:12:33 1995 Thu Sep 21 07:53:22 1995 186068
Wed Oct 11 09:48:53 1995 Thu Oct 12 14:10:16 1995 458264
Wed Nov 1 11:22:47 1995 Thu Nov 2 10:53:12 1995 369671
Mon Nov 20 11:13:36 1995 Sun Nov 26 05:28:17 1995 676256

Table A-1. Summary of Traffic Traces.

Although we do not have complete packet loss figures for these traces, we did record the
loss of approximately 6000 out of 44,000,000 packets during the 1 November 1995 trace
(before filtering to isolate HTTP packets). These figures yield a packet loss rate of only
0.014%. Similar packet capture experiments using this hardware and network have pro-

duced figures consistent with thisloss rate.

A.4Modd

Our model of HTTP traffic captureslogically meaningful parameters of Web client behav-
ior such asfiles sizes and user “think times’. The traffic traces described in the preceding
section provided us with empirical probability distributions describing various compo-
nents of this behavior. We used these distributionsto determine the characteristics of asyn-
thetic workload. In this section, we present the various components of our model, which

are summarized in Table A-2.

2. In arecent study of the characteristics of HTML documents indexed by the Inktomi “Web crawler”,
approximately 94% of the documents surveyed were accessed using the normal TCP port 80 [Woodruff96].
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Quantity Units Description

request length bytes HTTP request length

reply length bytes HTTPreply length

document size files Number of files per document

think time seconds Interval between retrieval of two successive docu-
ments

consecutive document pages Number of consecutive documents retrieved from

retrievals any given server

server selection server Relative popularity of any Web server, used to
select each succeeding server accessed

Table A-2. Quantities Modeled.
At the lowest level, our model deals with individual HTTP transfers, each of which con-
sists of asingle request-reply pair of messages. In the most common case, the client appli-
cation sends a request for some data; the server in turn replies by supplying that data. The
first two quantities of our model are therefore the request length and reply length of HTTP
transfers. The request and reply are both transmitted over asingle TCP connection [Bern-
ers-Lee9o].

At first glance, it may seem more appropriate for a model of network traffic to concern
itself instead with the number, size, and interarrival times of TCP segments. However, we
note that, in particular, packet interarrival times are governed by the TCP flow control and
congestion control algorithms. These algorithms depend in part on the latency and effec-
tive bandwidth on the path between the client and server. Since thisinformation cannot be
known a priori, we conclude that an accurate packet-level network simulation will depend
on asimulation of the actual TCP algorithms. Thisisin fact the approach taken for other
types of TCP bulk transfersin the traffic model described in [Danzig91]. In asimilar fash-
ion, our model generates transfers that need to be run through INSANE’ s TCP algorithms;

the model does not generate packet sizes and arrival times by itself.

Web documents can consist of multiplefiles. Thus, aserver and client may need to employ
multiple HT TP transactions, each of which requires a distinct TCP connection, to transfer

asingle document. For example, adocument could consist of HTML text [Berners-Lee95],

3. [Mah97] presents a slightly more sophisticated model, which describes the request and reply lengths of
the first HTTP transfer on any Web page separately from that of any remaining retrievals for that page.
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which in turn could specify three imagesto be displayed “inline” in the body of the docu-
ment. Such a document would require four TCP connections, each serving one HTTP
request and reply. The next higher level of behavior above individual filesis naturally the
Web document, characterized in terms of the number of files needed to represent a docu-

ment.

Between Web page retrievals, the user is generally considering her next action. We admit
the difficulty of characterizing user behavior, dueto its dependency on various human fac-
tors beyond the scope of this study. However, we can construct a distribution of user think

time based on empirical observations.

Assuming that users will tend to access strings of documents from the same server, it is
useful to characterize the locality of reference between different Web pages. We therefore
define the consecutive document retrieval s distribution as the number of consecutive pages
that a user will retrieve from a single Web server before moving to a new one (either asa
result of following hyperlinks in an existing document, or by selecting a completely unre-
lated document).*

Finally, the server selection distribution definestherelative popul arity of each Web server,
in terms of how likely it isthat a particular server will be accessed for a set of consecutive

document retrievals.

A.5 Experimental Results

From our traffic traces and subsequent analysis, we derived the various probability distri-
butionsfor the different components of our model. We found these distributions to be con-
sistent with the results of existing Web measurement studies. We have summarized the

more interesting facets of these measurementsin Table A-3.

A.5.1 Anomalies
In some cases, we noticed odd trendsin our data, which indicated alarge number of nearly-
identical Web documentstransferred periodically. For example, the 11 October 1995 trace

4. Implicit in this component of the model is the additional assumption that all the components of a Web
document tend to come from the same server.
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HTTP request sizes show a bimodal distribution.

HTTP reply sizes have a heavy-tailed distribution, and tend to be larger than request sizes.

A simple heuristic based on timing can be used to group individual files into documents.

The number of files per document tends to be small; 80% of documents required less than four file trans-
fers.

The number of consecutive documents retrieved from a given server tends to be small. 80% of visitsto a
server’s document space resulted in fewer than six documents being retrieved.

Table A-3. Selected Measurement Results.
showed a number of Web page retrievals with interarrival times of about five minutes.
There were 291 such transfers, accounting for approximately 20% of those transferred
during the whole trace. Upon further investigation, we determined that the documents
camefrom aWeb server that displayed real-time still images of the San Francisco, CA sky-
line. A Web page used an extension to HTML which caused clientsto automatically reload
documents every five minutes, thus updating the picture. As these (and other) periodic
HTTP retrievals were skewing our data, we removed them from our traces prior to further

anaysis.®

A.5.2 Request Length

HTTP requests are sent from a client to a server. They typically specify afile to retrieve,
although they may aso provide information to a computation to be performed on the
server. Also contained in each request are some identifying fields about the user, the client
software, and the request itself.

The only user bytes sent from client to server are those contained as a part of the HTTP
request. Thus, we measured the request sizes by simply counting the number of bytesin
the appropriate direction of each TCP connection, summed over all packets. The statistics

summarizing the requests in our four traces are shown in Table A-4.

The cumulative distribution functions (CDFs) for the request size distributions are shown
in Figure A-1. The reply sizesin our traces all exhibited a bimodal distribution, with one

large peak occurring around 250 bytes and another, smaller one around 1 KB. We believe

5. While it may be argued that these retrievals should contribute to our traffic model since they actually
occurred in real life, the nature of this model is such that it cannot accurately capture the correlations
between successive document retrievals from such a Web client. A model attempting to characterize such
periodic Web traffic should explicitly account for this behavior.
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19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995
Number 5030 5699 3659 18034
Minimum Size 10 40 40 8
Maximum Size 1825 1786 1333 2404
Mean Size 356 327 325 301
Median Size 231 244 235 244

Table A-4. Summary of HTTP Request Lengths (in Bytes).

that the former requests correspond to simple file retrievals, while the latter may contain
more complex requests such as those generated by HTML forms. However, there isinsuf-
ficient information in our existing traces to prove or disprove this hypothesis. (Investigat-

ing further would require packet traces containing all or most of the payload bytes from

each packet.)
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A.5.3 Reply Length

The HTTPreply consists of the bytes sent from the server to the client. Typically, thereply
contains either HTML text or some multimediadata (e.g. an image or audio clip) to bedis-
played by the Web client. In the case of an error (e.g. a nonexistent file), the HTTP reply

contains an error message. As with HTTP requests, some identifying information is also

included.

Request Length in Bytes
Figure A-1. Cumulative Distribution Functions of HTTP Request L engths.
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In Table A-5, we present a summary of the HTTP replies recorded in our four traces. The
CDFsfor thereply sizedistributions are shown in Figure A-2. We note that two of the max-
imum file sizes are identical. Upon further investigation, we found that these replies were
both generated by downloads of asinglelarge dataarchivefilefrom aWeb server operated

by alocal research group.
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Reply Length in Bytes
Figure A-2. Cumulative Distribution Functions of HTTP Reply Lengths.

19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995
Number 5030 5699 3659 18,034
Minimum Size | 62 8l 57 30
Maximum 8,146,976 3,270,319 1,740,705 8,146,976
Size
Mean Size 10664 8899 8319 8812
Median 2035 1532 2179 2127

Table A-5. Summary of HTTP Reply Lengths (in Bytes).

In each of the traces, the minimum reply length was very short (only tens of bytes). It is
likely that these replies represent either errors or “not modified” responsesto If-Modi -
fied-Since (conditional document retrieval) requests. While the actual length of some
files may indeed be in the range of tens of bytes, the addition of HTTP headers makes the
reply messages somewhat longer.
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We note that the maximum reply sizes are rather large (over 1 MB in each of the traces).
Furthermore, the means (8-10 KB) are much larger than the median reply sizes (about 2
KB). These characteristics are consistent with distributions that are “ heavy-tailed” (with a
large amount of the probability massin thetail of the distribution). It has been in fact dem-
onstrated that WWW file sizes are heavy-tailed [ Crovel|a96].

Ontheassumption that HT TP retrievalsgenerally result in the transfer of aWWW file (and
in particular, the assumption that large HT TP replies contain WWW files), it seems natural
to expect that HTTP replies would share this characteristic. We repeated the analysis of
[Crovella96] on our data, and found that reply sizes above 1 KB are reasonably well-mod-
eled by Pareto distributionswith o estimatesrangingfromo = 1.04toa = 1.14 S Fur-
ther details are given in Table A-6. By comparison, [Crovella96] arrived at an estimate of
o = 1.06.

19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995
o 1.05 104 1.09 114
Rz 0.98 0.99 0.97 0.98

Table A-6. Estl mates of the oo Parameter for the Tail of HTTP Reply Size
Distributions. R° is the coefficient of determi nation, and takes valuesin the range
[0...1] . Values near 1 indicate a“good” fit of the regression, and that the simple

linear regression used to estimate o. can account for nearly all the variation.

A.5.4 Page Length
Determining the number of files per pageisless straightforward, because we cannot deter-
mine exactly which TCP connections transferred parts of a single document. An HTTP

client merely issues the requests for the files making up a given document, in succession.

We therefore used two simple heuristics to determine whether two HTTP connections
belong to the same document. First, the two connections must originate from the same |P
address, since retrievals from two different client machines cannot possibly belong to the

same document. We note that it is possible for two connections from the same IP address

6. The Pareto distribution is a “heavy-tailed” probability distribution with a CDF given by

o
F(X) = P[X<x] = 1—(5) , where K is the minimum value of X.
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to be associated with two unrelated documents, which can happen in the case that two dif-
ferent users on the same host fetch a document at the same time. However, we evaluated
this possibility as unlikely, because the end hosts were workstations each used almost

exclusively by asingle user.

Second, the two connections cannot be separated by “too much time”, an interval deter-
mined by a parameter wecall T, .- Moreformaly, let c; and c, betwo HTTP connec-
tions. Let S(c) bethearrival time of the starting packet of connection ¢ and let E (c) be
thearriva time of the ending packet of connection ¢. Assuming S(c;) < S(c,) , wejudge
c, and c, to belong to the same document only if S(c,) —E(C)) STy g If
S(c,) <S(c,) <E(c,) ,thetwo connections overlap and we assumethat their respective
files belong to the same document. This latter condition can occur with browsers that use
multiple, overlapping TCP connections to improve interactive performance, such as
Netscape Navigator. Figure A-3 illustrates the role of T, o in determining the relation
between two HTTP connections.

T —»]

thresh

c
1 - -

I Tthresh

I Tthresh

-

Time

Figure A-3. Heuristic for Determining the Relation Between Two HTTP Connections.
Timelines run left-to-right; TCP connections are represented by thick arrows. In the top
timeline, ¢, startswithin T, time after the end of ¢, ; thuswe judge c, and c, to
belong to the same document.q F'Td?he center timeline, the gap between ¢, and ¢, is greater
han T, 4, thusthe two belong to different documents. In the bottom document, ¢, starts
before ¢, finishes; in this case the two are judged to belong to the same documen.
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This heuristic requires the definition of asuitablevaueof . AS e PECOMES VErY
short, it may become smaller than the time necessary for an HTTP client to initiate a
retrieval. In this case, connections which really belong to the same Web document will be
falsely classified as belonging to different documents. Conversely, as T, ., becomes
large, it may become longer than the time for a user to react to the displayed document and
select a new document to view. This can make files from different pages appear to be part

of the same document.

The analysisin [Crovella96] required asimilar classification in order to analyze the distri-
bution of idle times between connections. This analysis classified files separated by less
than one second of idle time as belonging to the same document, due to the limitations of
the users’ reaction time. Idle times greater than 30 seconds were deemed to separate inde-
pendent documents, as few items would take longer to be processed and displayed. Idle
timesin theintermediate range were assumed to belong to a“ transition” region. According
to this reasoning, reasonable vaues for T, . ¢can be found in the range

1 sec <Tthresh<30860.

We picked T, ., = 1sec for this study. The primary influence on our choice of this
value is that users will generally take longer than one second to react to the display of a
new page and order a new document retrieval. For HTTP clients that perform multiple
overlapping file transfers, the time to process and display a file does not affect the choice
of T eqr » @ the various components of a multipart document are downloaded, processed,

and displayed in parallel.

Given our choice of an idle threshold, we characterized the number of files per document,
as shown in Table A-7. We note that in the survey of HTML documents in [Bray96],
dightly more than half of all pages contained either zero or oneinlined image, correspond-
ing to either one or two connections per document. Considering that some of our “docu-
ments” were actually single-file (thus, single-connection) downloads, which would tend to
skew this distribution downward, we feel that our observations are consistent with this sta-

tistic.
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19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995
Mean 29 2.8 3.2 31
Median 1 1 1 1

Table A-7. Mean and Median Number of Files Per Document, T, ., = 1 sec.
We note that although the distributions of the number of files per document varies as
Tivresy Changes, they are very similar for values around T, ., = 1sec. Thus, the exact
choice of T, ., isnot critical to our anaysis. Figure A-4 illustrates this fact graphicaly,
for the set of HTTP connections recorded in the 19 September 1995 trace.
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Figure A-4. Cumulative Distribution Functions of Document Length in Files, 19
September 1995. Curves correspond to varying vaues of T, o, in seconds.

A.55User Think Time

Given aselection of T, ., the empirica distribution of user think times between pages
can be determined by the set of all interconnectionidietimes T, T> T, o . InTable A-8,
we summarize the user think times extracted from the four Web traces. The 20 November
1995 trace had a much longer mean think time than the others. We believe thisfact is due
to the timing of this particular trace, which covered the American Thanksgiving holiday in
late November. The University of California observesthis holiday as afour-day weekend,
which could conceivably account for some of the long idle times. The CDFs for the user

think time distributions for al four tracesis given by Figure A-5.
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Figure A-5. Cumulative Distribution Functions of User Think Times.
19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995
Number 1678 1995 1092 5692
Maximum 86395 80681 65914 271309
Time
Mean Time 1313 854 837 1915.84
Median Time 15 16 16 14

Table A-8. User Think Times in Seconds.

A.5.6 Consecutive Document Retrievals

The current design of many Web document archives is such that users will frequently
access documents from the same server in succession. Aswe saw in our discussion of var-
ious virtual circuit management policies in Chapter 6, this locality of TCP connections
may be asignificant influence on network performance. Table A-9 summarizesthe number
of consecutive document retrievalsfrom HT TP servers during our network traces. By con-
trast, [Catledge95] noted that users accessed an average of ten consecutive pages per
server, considerably more than the average of four to five document retrievals we
observed. We believe that the difference is attributable to the interaction between user
browsing strategies and client caching in Web browsers. Userstend to use abrowsing strat-
egy that has been described as “ spoke and hub”, which involves frequent backtracking to
already-visited pages. In browsers that implement client-side caching, revisited pages will

not generate any network traffic (and thus would not appear in a network trace), but they
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would be counted in aclient-side event trace. Thus, we would expect our consecutive doc-
ument retrieval count to be somewhat lower than the corresponding figure from a client

trace by about half, as we observed.

19 Sep 1995 11 Oct 1995 1 Nov 1995 20 Nov 1995
Number 253 306 171 873
Maximum 37 54 37 112
Documents
Mean Docu- 41 43 4.2 4.4
ments
Median Docu- | 2 2 3 2
ments

Table A-9. Consecutive Document Retrievals Per Server Access.

In Figure A-10, we show the CDF for the consecutive document retrievals distributions
from our traces. As can be seen, userstend to switch between serversfairly frequently (the
median number of consecutive documents retrieved is usually two). However, we noted

cases in which visits to Web servers lasted for tens of consecutive documents.
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Table A-10. Cumulative Distribution Functions for Consecutive Document Retrievals.

A.5.7 Server Selection
The server selection distribution characterizes the relative popularity of Web servers. We
computed the number of timesthat any given Web server was used for a set of one or more

consecutive document retrievals. In Table A-11, we summarize the ten most popular serv-
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ers for consecutive document retrievals during the 19 September 1995 trace, out of atotal

of 136 servers accessed as the start of 253 strings of consecutive document retrievals.

Rank Frequency Type
43 Locd
Locd
Remote
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Remote
Local
Remote

Remote
Local
Remote
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10 Remote

Table A-11. Top Ten Servers Observed, 19 September 1995. The frequency column
shows the number of times any given server was accessed as the start of a stream of
consecutive document retrievals. The type of a server reflects whether it islocated
locally on-site or not.

By thismetric, the most-visited server in thistrace (indeed, for all four traces) wasthelocal
departmental Web server. Among other items of interest, it contains homepages for the
vast mgjority of the users of the machines attached to the network being traced, aswell as
the startup document for many users. We note that four of the top ten servers were located

on-site.

Given these characteristics, particularly the fact that so many of the servers accessed were
local to the tracing site, we believe that we have insufficient information to properly char-
acterize this aspect of our model. We have chosen instead to approximate the server selec-
tion distribution using a Zipf's Law distribution. Zipf's Law is a discrete, heavy-tailed
distribution that states that the probability of selecting the ith most popular iteminasetis
proportional to 1/i . Originaly, it was used to describe the frequency of wordsin texts, as
well as other human-related phenomena[Zipf49]. More recently, this distribution has been
applied to the access frequency of Web documents [Crovella96, Arlitt96]. It would seem
reasonable to apply Zipf’'s Law, or some other heavy-tailed distribution, to the access pat-
terns of serversaswell, but confirmation of thisassertion requiresalarger data samplethan

we have available.
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We note here several difficulties in attempting to measure visits to Web servers from IP-
layer packet traces. Thefirst problem is that |P-layer packet traces do not reveal the exact
hostname originally used to access documents, but only the | P address of the server. Host-
names can only be obtained by performing queries to nameservers, which will return the
canonical names of hosts, but not their aliases. For example, it would be very difficult to
determine that the machine whose canonical name iskohler.CS.Berkeley.EDU IS

frequently accessed ashttp.CS.Berkeley.EDU Of www.CS.Berkeley.EDU.

Another, related problem isthat, in the case that a hostname mapsto multiple | P addresses,
it may be difficult to associate accesses to these various | P addresses with a single name.
This particular situation may arise in the case of replicated HTTP servers, which rely on
randomization in the Domain Name System to spread accesses to a single Web server

across multiple machines, as described in [Katz94].

A.6 Model Representation

When choosing arepresentation for thistraffic model, there were two basic approacheswe
considered. One was to attempt to fit the observed datato probability distributionsthat are
easily described analytically. A ssmple analytic representation has the advantages of being
compact and (perhaps) easier to use. This approach was discussed in [Paxson94a]. How-
ever, in circumstances where a data set cannot be described by a well-known distribution
(such as the bimodal request size distributions discussed in Section A.5.2), this technique

cannot easily be used.

The alternative was to represent probability distributions by their CDFs, and to use the
inverse transformation method (for example, as described in [Jain91] and applied in
[Danzig91]). While requiring more storage and perhaps being slower to generate random
values, this approach does have the virtue of being able to represent arbitrary probability

distributions.

For two reasons, we chose to maintain the CDF representations for most of our probability
distributions. (However, the Zipf's Law substitute to the server selection distribution was

calculated analytically.) Thefirst reason wasthe ability to represent arbitrary distributions.
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A more pragmatic reason wasthat the t cp11b distributionsfrom [Danzig91] already used
this representation, and we had already implemented the mechanisms to generate random
values using the inverse transform method. We based our distributions on the traffic gath-
ered in the 19 September 1995 trace.

The INSANE network simulator, initially described in Chapter 3, usesthis model to mimic
both the activity of HTTP clients and that of HT TP servers. The behavior of asimple Web
browser is illustrated via the pseudo-code in Figure A-6; an algorithm for smulating a
single-threaded Web server is shown in Figure A-7. The ssimulation of more complex
HTTP applications, such as Web browsers capable of multiple, concurrent retrievals, or

multi-threaded Web servers, would be similar.

while (!done) {
/* select server and number of documents to retrieve */
/* from that server */
server = ServerSelection() ;
numdocuments = ConsecutiveDocumentRetrievals () ;

/* retrieve documents in succession */
while (numdocuments) {

/* retrieval for document */
numfiles = DocumentLength () ;
while (numfiles)
requestLength = Request () ;
send (requestLength) ;
reply = receive() ;
numfiles--;

}

/* wait for user to think */
wait (UserThinkTime ()) ;
numdocuments--;

Figure A-6. Pseudo-Code for a Simple HTTP Client.

We reiterate that INSANE also models the TCP congestion and flow control mechanisms

of TCP, and that any meaningful Internet simulation must account for their effects.
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while (!done) {

/* Get request from client */
request = receive() ;

/* Figure out length of reply */
replyLength = Reply () ;

send (replyLength) ;

Figure A-7. Pseudo-code for aSimple HTTP Server.

A.7 Conclusions

We have constructed an empirical model of network traffic produced by the HyperText
Transfer Protocol used by World Wide Web applications. Thismodel consists of a number
of probability distributions determined by analysis of actual HTTP conversations. From
packet traces, we have built up higher-layer of communication patterns, from individual
HTTP retrievalsto Web pages to groups of pages. This approach gives a sufficient level of
detail to serve as a component of aworkload generator for a packet-level simulation of an
| P internetwork being used to carry Web traffic.

Our characterization of Web-generated network traffic has shown that HTTP requests
exhibit a bimodal distribution, and that (as revealed in prior studies) the sizes of HTTP
replies have aheavy-tailed distribution. We have shown that asimple heuristic can be used
to separate HTTP transfersinto different Web pages. We have characterized some aspects
of user Web page selection in terms of locality of consecutive documents referenced.
Where possible, we have compared the results of our measurements and analysis to other

Web measurement studies and found them consistent with those prior results.

A.8 Future Work

There are, of course, areas where this model can be refined; we list severa as topics for
possible future work. We feel that the Zipf's Law substitute to the server selection distri-
bution could be replaced with an empirical distribution, given an adequately-long trace of

network data. It would also be desirable to investigate any correlations between the differ-
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ent components of our model (for example, there may be a correlation between the popu-

larity of agiven server and the number of consecutive documents fetched from it).

The constantly-changing nature of the Web calls for updates to this model to track trends
over time. The growth of Web traffic may affect the nature of documents and Web-brows-
ing behavior. New protocol developmentswill force the use of new measurement and anal-
ysis methodol ogies.7 Increasing use of new Web features such as Java will change the

profile of files and documents being accessed.

Finally, the conversion of our empirical distributions to closed-form analytic expressions
would aid in making the models adaptable to the data and workload found for different

types of user communities and document archives.

7. Infact, performing new traffic measurements with current-day Web traffic requires more advanced anal-
ysis techniques than we present here, due to early support for persistent-connection HTTP on the part of
some Web browsers and servers. For example, recent versions of the Netscape Navigator browser
[Netscaped6] and the Apache server [Apache96] support this feature.
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B An Empirical Model of Internet
Video

We present amodel of Internet video traffic sent by the popular applicationsvic and vgw.
The model is based on atraffic trace taken during late 1995 at the University of California
at Berkeley. It captures the behavior of avic/vgw source during the two different modes
of operation (conditional replenishment and background updates) encountered during
video transmission. We present both the model and the empirical distributions for the var-
ious quantities making up the model. Finally we show how it can be used to generate a

stream of packets for a network simulation, such as INSANE.

B.1 Introduction

The popular video tool vic [McCanne95, M cCanne9d6b] uses an encoding scheme, known
as Intra-H.261, designed for the lossy network environment of the Internet and its Multi-
cast Backbone (MBONE) virtual network [Macedonia94]. To provide resilience against
network losses, this scheme encodes and transmits only intraframe-coded blocks, thus
there are no tempora dependencies between block updates. Each block is encoded using

the H.261 video coding standard.

Instead of performing inter-frame compression (as with video coding schemes such as
MPEG), vic uses a scheme known as conditional replenishment to select blocks to be
transmitted. Only blocks which change by more than a certain threshold amount (for exam-
ple, dueto motion in the video image) are transmitted. In the absence of motion, blocks not
experiencing motion are updated less frequently, so that al receivers eventualy receive a

complete image.
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vic performs open-loop rate control on a per-packet basis. After it sends each packet, the
transmitter “sleeps’ for a certain amount of time determined by the rate control algorithm

and the rate settings specified by the user (bit rate and frame rate).

One problem with multicasting in the Internet environment is the heterogeneous nature of
the various networks and hosts. The different capabilities (especially in terms of network
bandwidth) can makeit difficult to select asource bit rate that delivers an acceptable image
quality to all parties. To addressthis problem (and others), an application-level video gate-
way vgw [Amir95b, Amir96] has been developed to convert between encoding formats
and bit rates.® Thus, a multicast source can send a high bit rate video stream, which can
then be transcoded and rate-limited by vgw to a lower-bit rate stream more suitable for
low-bandwidth environments. vgw uses the same coding and rate control algorithms as

vic.

vic and vgw are most visibly used in the Internet MBONE for the purpose of transmitting
live video of interesting sessions to the Internet community. Past examples have included
portions of Internet Engineering Task Force (IETF) meetings, portions of relevant confer-
ences such as ACM SIGCOMM, and various seminar series. Combined with an Internet
audio tool (vat) and ashared whiteboard (wb), these tools can be used to extend the audi-

ence of a presentation far beyond alocal site.

In the network simulations required by our evaluation of IP-over-ATM policies, we wanted
to include some instances of video applications, both to analyze their performance and
their effects on other applications. To fill this need, we created a synthetic traffic source

that mimics the operation of vic (or vgw).

Section B.2 describes some related and prior work. In Section B.3, we describe our meth-
odology for capturing a sample of video traffic. Section B.4 describes our traffic model,

and shows how we derived the model’s empirical probability from our network measure-

1. This software has since been renamed rtpgw, reflecting the fact that it can be used as an application-
level gateway for different types of RTP sessions, not just video.
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ments. We discuss the representation and usage of our model in Section B.5. Finadly, in

Section B.6, we make some concluding remarks.

B.2 Related Work

There are many examples of synthetic video workloads based on empirical measurements
and observations of real traffic. Perhaps the best-known and most-often-used such model
isthe “Star Wars” workload of [Garrett93], which consists of a trace of the video frame
sizesfrom apopular science-fiction motion picture, encoded using aVBR video coder per-

forming intraframe compression.

Several well-known Internet-based models, based on traces of actual traffic, exist. For
example, tcplib [Danzig9l] can be used to mimic the traffic sent by a variety of
common Internet applications, circa1991. The model described in Appendix A providesa

similar characterization for World Wide Web activity.

B.3 M ethodology

We wanted to base our model on observed network traffic. To do this, we needed atrace
of packets (with timing) sent during an actual MBONE multicast. We used the t cpdump
[Jacobson95] utility to capture all the packet headersfrom vgw during a multicast from the
Berkeley Multimedia Seminar Series on 1 November 1995. The session used vgw to
transcode a 1 Mbps motion JPEG-encoded video stream into Intra-H.261 at alower bit rate
for transmission over the MBONE. The lower-rate MBONE multicast session we mea-

sured had atarget bit rate of 128 Kbps and atarget frame rate of 8 frames per second.

The session we traced lasted from 12:14 PM to 1:46 PM (local time), atotal of one hour,
32 minutes. During this time the vgw process sent 69,135 packets, containing a total of
38.8 MB of data (thisfigure includes only UDP payload, not packet headers). The average

bit rate, over the entire trace, was 56 Kbps.

B.4 M odel

We model the stream of video packets using a two-state model, as shown in Figure B-1.

Each state represents the modes of operation when vgw outputs conditional replenishment

and background updates, respectively. We note that this two-state model is rather smplis-
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tic—a dightly more accurate model would account for the fact that conditional replenish-
ment and background updates can, in fact, take place concurrently. Such amodel could be
captured either by adding more states to the existing model or by using a superposition of
two packet arrival processes (one for each type of update). However, our ssimplified model

has the virtue of being easy to derive from our trace data.

ollpC

Figure B-1. Two-State Model of Video Source. The two states refer to two modes of
operation; packets transmitted from each state have different characteristics.

The length of time the application transmits in each state is described in terms of the
number of consecutive packets sent from each visit to that state. We name these two dis-

tributions packets., and packetsg, respectively.?

Within each state, the source sends UDP packets with sizes drawn from the size, and
Sizeg distributions, as appropriate. We note that selecting the packet sizes in each state
issufficient to completely describe the source’ s behavior while in that state, dueto therate
control agorithm employed by vic and vgw. When doing conditional replenishment, a
packet of size s bytesisfollowed by agap of % seconds, where s isin bytesand BR is

the target bit rate in bits per second.

In the case of background updates, any packet (regardless of size) isfollowed by a gap of
% seconds, where FR isthetarget frameratein frames per second. Thisgap size ensures
an update of at least one block per frame time. We note that each update block is much

smaller than a complete video frame.

We computed the four probability distributions of our model, based on the packet sizesand
arrival times captured during the MBONE multicast described in Section B.3.

2. We chose this representation, rather than using transition probabilities, because it allows us to describe
two-state behavior other than atwo-state Markov chain.
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B.4.1 Packet Classification

For each of the packets we captured, we recorded the UDP payload size and the length of
the gap separating that packet from the one following it. Figure B-2 shows a scatterplot of
arepresentative subset of the packetsin our trace.
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Figure B-2. Scatterplot of 20,000 Packets. This plot shows the packet payload size and
following interpacket gap.

We observe that many of the packets appear to be loosely clustered into two groups. The
first lies along a line through the origin, with a slope corresponding to approximately 61
microseconds per byte. These packets are conditional replenishment updates. The slope of

the line corresponds to the target bit rate, 128 Kbps.

The other mgjor grouping of packets lies around the horizontal line with a'Y intercept at
0.125 seconds. These packets are background updates; 0.125 seconds is the reciprocal of

the target frame rate (eight frames per second).

Packetslying far away from either line can be explained by avariety of phenomena, includ-
ing queueing or media access delays, packet loss, or operating system scheduling granu-
larity. For many of these reasons, we note that it isimportant to capture traffic close to the
source. Our traces were captured on the same subnet as the workstation running the vgw
transcoder. Transitions between the BG and CR states can al so cause these outlying points,

due to differences between our model and the vic/vgw implementation.
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We used a graphical method to classify al the packets in the trace as being either condi-
tional replenishment or background update packets. We classified each point (and associ-
ated packet) according to which of the two aforementioned clusters of packets was closer.
This procedure gave us the ability to reconstruct, at least partially, the origina applica

tion’ s behavior, even when the exact state of the source' s encoder was unknown.3

B.4.2 Packet Sizes
Oncewe were ableto classify packetsinto the two classes (CR and BG), we could examine
the characteristics according to their types. Thefirst natural measurement was the distribu-

tion of packet sizes.

Conditional replenishment packets were, in general, larger than background updates. CR
packets were an average of 758 bytes long, and accounted for 27.9 MB of the bytes
recorded (72% of the total). By comparison, the background updates, which made up 10.9
MB of the trace bytes, had an average length of 338 bytes. In Figure B-3 we show the
cumulative distribution functions of the size., and size;, packet size distributions.
Clearly the two have very different distributions, and need to be modeled separately (we
note that they depend very much on the threshold value used to detect changes in blocks).

B.4.3 State Times
By counting the number of consecutive packetsin each of the two states, we computed the
distributions of the state times (packets-; and packets, ;). They give some measure of

how long the video source remained in either the CR or BG states.

The conditional replenishment states lasted longer in general than the background updates
states (on average, 5.03 packets, vs. 4.43). However, the longest background states were
much longer (462 consecutive packets, as opposed to 37), due to extremely long times
without any motion in the video image. Figure B-4 shows the cumulative distribution of
the state times.

3. We actually collected several sessions packet headers, when vgw was till under development and
undergoing debugging. By viewing scatterplots similar to Figure B-2, the author of vgw was able to iden-
tify the effects of bugsin old versions of vgw [Amir953].

138



1 .

Background Updates ———
Conditional Replenishment -------

06 r

CDF

04 r

02 r

0 500 1000
Packet Size (bytes)
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Figure B-4. Cumulative Distribution Functions of State Times.

B.5 M odel Representation
As with our HTTP model, we chose to represent the various probability distributions by
storing their CDFs and using the inverse transform method to compute samples from these

distributions.
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We implemented a simulated video source based on this model as a part of the INSANE
network simulator. It transmits packets according to this model for a given target bit rate

and frame rate.* The pseudo-code for this source is shown in Figure B-5.

/* initialize */
state = CR;
packets = PacketsCR() ;

while (!done) {

/* compute next packet and inter-packet gap */
if (state == CR) {
size = SizeCR() ;
delay = size * 8 / BR;
}
else {
size = SizeBG() ;
delay = 1 / FR;

}

/* switch states if necessary */
if (--packets) {
if (state == CR) {
state = BG;
packets = PacketsBG() ;

}
else {

state = CR;

packets = PacketsCR() ;
}

}

/* send packet and wait for inter-packet gap */
Send (size) ;
Sleep (delay) ;

Figure B-5. Pseudo-code for a Simple Internet Video Source.

In our simulations, the sink of video data was a passive receiver; it only recorded statistics

on received data(such aslossand delay). Inreality, the receiver would al so be sending con-

trol and membership information to the other members of the multicast group. A charac-

4. We believe this model to be reasonably accurate and useful, as long as the target bit rate and frame rate
used by the synthetic traffic source are close to those of the original source. In al the simulations we did, we
used the original bit rate of 128 Kbps and the original frame rate of 8 frames per second.
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terization of this traffic, which is small in volume compared to the actual video data, is

beyond the scope of this study.

Finally, we note that although we captured data from amulticast session, INSANE (as cur-
rently implemented) only supports unicast video transmission and data forwarding. Asthe
origina session had only one sender, we believe that the model is still applicable to our

simulation scenarios.

B.6 Conclusions

We have derived an empirical model of Intra-H.261 coded video, as sent by the coder used
by the MBONE video tools vic and vgw. This model is based on a traffic trace taken
during alive MBONE multicast in late 1995. We believe that our model is simple enough
to be easily used and that it captures enough interesting, meaningful properties of thetraffic

stream to be used in network simulations.

It would be useful to test this model against avariety of different types of video data, pro-
duced by this same application. One fairly simple study would be to examine different
video contents and their effect on the output stream from the codec. For example, a“talking
heads’ seminar multicast would very likely generate very different traffic from an “action
movie”. Even though the two could be encoded using the same coder, with the same
parameters, different amounts of motion would affect the use of conditional replenishment,
and hence produce different bit rates. It would also be helpful to gather data produced
streams with different thresholds, frame rates, and bit rates, to provide both avalidation of

this model and a variety of workloads.

Another possible area of future work would to be to investigate possible short-term or

long-term correlations in the video stream.

141



Bibliography

[Almquist92]

[Amir95a]

[Amir95b]

[Amir96]

[Apache96]

[Arlitt96]

[ATM Forum95]

[Banerjead6]

[Berners-Leed5]

Philip Almquist. Type of Service in the Internet Protocol Suite.
Internet Request for Comments 1349, July 1992.

Elan Amir. Personal communication, December 1995.

Elan Amir, Steve McCanne, and Hui Zhang. “An application
level video gateway.” In Proceedings of ACM Multimedia 95,
San Francisco, CA, November 1995.

Elan Amir and Steve McCanne. rtpgw software, 1996. This
software is available at ftp://daedalus.cs.berkeley.edu/pub/
rtpgwy/.

The Apache Group. Apache software, 1996. This software is
available at http://www.apache.org.

Martin F. Arlitt and Carey L. Williamson. “Web server
workload characterization: The search for invariants” In
Proceedings of the ACM SGMETRICS Conference on
Measurement & Modeling of Computer Systems, pages 126—
137, Philadelphia, PA, May 1996.

ATM Forum. ATM User-Network Interface Specification,
Version 3.1. PTR Prentice Hall, 1995.

Anindo Banerjea, Domenico Ferrari, Bruce A. Mah, Mark
Moran, Dinesh C. Verma, and Hui Zhang. “The Tenet Real-
Time Protocol Suite: Design, implementation, and
experiences.” |IEEE/ACM Transactions on Networking, 4(1):1—
10, February 1996.

Tim Berners-Lee and Daniel W. Connolly. Hypertext Markup

Language — 2.0. Internet Request for Comments 1886,
November 1995.

142



[Berners-L ee96]

[Biagioni93]

[Bohn94]

[Bray96]

[Céceres9l]

[Céceres9?]

[Céceres93)]

[Catledge9s]

[Claffyo4]

[Clark92]

[Colegs]

Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk Nielsen.
Hypertext Transfer Protocol — HTTP/1.0. Internet Request for
Comments 1945, May 1996.

Eduardo Biagioni, Eric Cooper, and Robert Sansom. “ Designing
a practical ATM LAN.” IEEE Network, pages 32—-39, March
1993.

Roger Bohn, Hans-Werner Braun, Kimberly C. Claffy, and
Stephen Wolff. “Mitigating the coming Internet crunch:
Multiple service levels via precedence.” Journal on High Speed
Networks, 1994.

Tim Bray. “Measuring the Web.” In Proceedings of the Fifth
International World Wide Web Conference, Paris, France, May
1996.

Ramon Céceres, Peter B. Danzig, Sugih Jamin, and Danny
Mitzel. “ Characteristics of wide-area TCP/IP conversations.” In
Proceedings of ACM SSGCOMM '91, Zurich, Switzerland,
September 1991.

Ramoén Céceres. Multiplexing Traffic at the Entrance to Wide-
Area Networks. PhD thesis, Computer Science Division,
University of Californiaat Berkeley, December 1992.

Ramoén Céceres. “Multiplexing data traffic over wide-area cell
networks.”  Unpublished technical report, Matsushita
Information Technical Laboratory, Princeton, NJ, January 1993.

LaraD. Catledge and JamesE. Pitkow. “Characterizing
browsing strategiesin the World-Wide Web.” In Proceedings of
the Third International World Wide Web Conference,
Darmstadt, Germany, April 1995.

Kimberly C. Claffy. Internet Traffic Characterization. PhD
thesis, University of California, San Diego, 1994.

David D. Clark, Scott Shenker, and Lixia Zhang. “ Supporting
real-time applications in an integrated services packet network:
Architecture and mechanism.” In Proceedings of ACM
S GCOMM ' 92, pages 1426, Baltimore, MD, August 1992.

Robert G. Cole, David H. Shur, and Curtis Villamizar. |P over
ATM: A Framework Document. Internet Request for Comments
1932, April 1996.

143



[Crovella9g]

[Cunhags]

[Danzig91]

[Deering96]

[Ferrari89]

[Ferrari9Q]

[Ferrari94]

[Fielding96]

[Fraser92]

[Garrett93]

Mark E. Crovellaand Azer Bestavros. “ Self-similarity in World
Wide Web traffic. Evidence and possible causes” In
Proceedings of the ACM SGMETRICS Conference on
Measurement & Modeling of Computer Systems, pages 160—
169, Philadelphia, PA, May 1996.

CarlosR. Cunha, Azer Bestavros, and Mark E. Crovella
“Characteristics of WWW client-based traces.” Technicad
Report BU-CS-95-010, Computer Science Department, Boston
University, July 1995.

Peter B. Danzig and Sugih Jamin. “tcplib: A library of TCP
internetwork traffic characteristics.” Technical Report USC-CS-
91-495, Computer Science Department, University of Southern
Cdlifornia, Los Angeles, CA, 1991.

Steven E. Deering and Robert M. Hinden. Internet Protocol,
Version 6 (IPv6) Specification. Internet Request for Comments
1883, January 1996.

Domenico Ferrari. “Rea-time communication in packet
switching wide area networks.” Technical Report TR-89-022,
International Computer Science Ingtitute, Berkeley, CA, May
19809.

Domenico Ferrari. “Client requirements for real-time
communication services.” |[EEE Communications Magazine,
28(11):65-72, November 1990.

Domenico Ferrari, Anindo Banerjea, and Hui Zhang. “Network
support for multimedia — a discussion of the Tenet approach.”
Computer Networks and |SDN Systems, 26:1267-1280, 1994.

Roy T. Fielding, Jm Gettys, Jeffrey C. Mogul, Henrik Frystyk
Nielsen, and Tim Berners-Lee. Hypertext Transfer Protocol —
HTTP/1.1. Internet Draft draft-ietf-http-v1.1-spec-07, August
1996.

A.G. Fraser, C.Kamanek, A.Kaplan, W. Marshall, and
R. Restrick. “Xunet 2: A nationwide testbed in high-speed
networking.” In Proceedings of IEEE INFOCOM ' 92, Firenze,
Italy, May 1992.

Mark W. Garrett. Contributions Toward Real-Time Services on
Packet-Switched Networks. PhD thesis, Columbia University,
New York, NY, May 1993.

144



[ Gibbons85]

[Gupta95a]

[Guptagdsh]

[Handley96]

[Heinanen93]

[ION96]

[Ipsilon96]

[Jacobson88]

[Jacobson95]

[Jacobson96]

[Jain91]

[Johnston95]

Jean Dickinson  Gibbons. Nonparametric Methods for
Quantitative Analysis. American Series in Mathematical and
Management Sciences. American Sciences Press, Inc.,
Columbus, OH, second edition, 1985.

Amit Gupta. Multi-party real-time communication in computer
networks. PhD dissertation, University of California at
Berkeley, December 1995.

Amit Gupta, Wingwai Howe, Mark Moran, and Quyen Nguyen.
“Resource sharing for multi-party real-time communication.” In
Proceedings of INFOCOM ’ 95, Boston, MA, April 1995.

Mark Handley. “Re: Port ranges assigned to video and audio.”
Posting to rem-conf mailing list, message
19388.837175676@cs.ucl.ac.uk, July 1996.

Juha Heinanen. Multiprotocol Encapsulation over ATM
Adaptation Layer 5. Internet Request for Comments 1483, July
1993.

“Internetworking over NBMA working group charter,” May
1996. Thisdocument isavailable at ftp://ftp.nexen.com/publ/ion/
ion-charter.txt.

Ipsilon Networks. IP Switching: The Intelligence of Routing,
The Performance of Switching, February 1996.

Van Jacobson. “Congestion avoidance and control.” In
Proceedings of ACM SGCOMM 88, Stanford, CA, August
1988.

Van Jacobson, Craig Leres, and Steven McCanne. tcpdump
software, Version 3.0.2, 1995. This software is available at ftp:/
[ftp.ee.lbl.gov/tcpdump.tar.Z.

Van Jacobson and Steve McCanne. vat software, 1996. This
software is available at ftp://ftp.ee.lbl.gov/conferencing/vat/.

Ra Jain. The Art of Computer Systems Performance Analysis.
John Wiley & Sons, Inc., New York, NY, 1991.

William E. Johnston. “BAGNet: A high speed, metropolitan

area, |IP over ATM network testbed.” In Proceedings of |IEEE
Compcon 1995, San Francisco, CA, March 1995.

145



[Kamanek90]

[Kantor86]

[Kantor91]

[Katz94]

[Keshav94]

[LANE9S]

[Laubach94]

[Luciani96]

[Lund95]

[Macedoniad4]

[Mah3]

[Maho4d]

C. R. Kamanek, H. Kanakia, and S. Keshav. “Rate controlled
servers for very high-speed networks.” In Proceedings of
Globecomm’ 90, San Diego, CA, December 1990.

Brian Kantor and Phil Lapsley. Network News Transfer
Protocol. Internet Request for Comments 977, February 1986.

Brian Kantor. BSD Rlogin. Internet Request for Comments
1258, December 1991.

Eric Dean Katz, Michelle Butler, and Robert McGrath. “A
scalable HTTP server: The NCSA prototype.” In Proceedings of
the First International WMAWV Conference, Geneva, Switzerland,
May 1994.

S. Keshav. “Experiences with large videoconferences on
XUNET II.” In Proceedings of INET '94, Prague, Czech
Republic, June 1994.

ATM Forum, Foster City, CA. LAN Emulation Over ATM,
Version 1.0, January 1995.

Mark Laubach. Classical IP and ARP over ATM. Internet
Request for Comments 1577, January 1994.

James V. Luciani, Dave Katz, David Piscitello, and Bruce Cole.
NBMA Next Hop Resolution Protocol (NHRP). Internet Draft
draft-ietf-rolc-nhrp-10, October 1996.

Carsten Lund, Steven Phillips, and Nick Reingold. “Adaptive
holding policiesfor IP over ATM networks.” In Proceedings of
|EEE INFOCOM ' 95, pages 80-87, Boston, MA, April 1995.

Michael R. Macedonia and Donald P. Brutzman. “Mbone
provides audio and video across the Internet.” |EEE Computer,
pages 30—36, April 1994.

Bruce A. Mah. “A mechanism for the administration of real-
time channels.” Masters report, University of California at
Berkeley, April 1993.

Bruce A. Mah. “Enhancements to the XUNET IP service.”
unpublished technical memorandum, AT& T Bell Laboratories,
Murray Hill, NJ, July 1994.

146



[Mah94b]

[Mah97]

[Maher9s]

[McCanne9s]

[McCanned6a]

[McCanned6b]

[McKusick96]

[Mogul95]

[Mosaic95]

[Netscape9o]

[Newman96a]

Bruce A. Mah. “Measurements and observations of |P multicast
traffic.” Technical Report CSD-94-858, University of California
at Berkeley, December 1994.

Bruce A. Mah. “An empirical model of HTTP network traffic.”
In Proceedings of IEEE INFOCOM ’97, Kaobe, Japan, April
1997. To appear.

Maryann Perez Maher, Fong-Ching Liaw, Allisamn Mankin,
Eric Hoffman, Dan Grossman, and Andrew G. Malis. ATM
Sgnalling Support for IP over ATM. Internet Request for
Comments 1755, February 1995.

Steven McCanne and Van Jacobson. “vic: A flexible framework
for packet video.” In Proceedings of ACM Multimedia *95,
pages 522-522, San Francisco, CA, November 1995.

Steve McCanne and Sally Floyd. ns software, 1996. This
software is available at http://www-nrg.ee.lbl.gov/ng/.

Steve McCanne and Van Jacobson. vic software, 1996. This
software is available at ftp://ftp.ee.lbl.gov/conferencing/vic/.

Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and
John S. Quarterman. The Design and Implementation of the 4.4
BSD Operating System. Addison-Wesley Publishing Company,
Reading, MA, 1996.

Jeffrey C. Mogul. “The case for persistent-connection HTTP.”
In Proceedings of ACM S GCOMM ’'95, pages 299-313,
Cambridge, MA, August 1995.

National Center for Supercomputing Applications. NCSA
Mosaic software, July 1995. This software is available at http://
www.ncsa.uiuc.edu/SDG/Software/ XMosaic/.

Netscape Communications Corporation. Netscape Navigator
software, 1996. This software is avallable a http://
home.netscape.com/.

Peter Newman, W.L. Edwards, Robert M. Hinden, Eric
Hoffman, Font Ching Liaw, Tom Lyon, and Greg Minshall.
Ipsilon Flow Management Protocol Specification for 1Pv4
Version 1.0. Internet Request for Comments 1953, May 1996.

147



[Newman96b]

[Newman96c]

[Ousterhout94]

[ Padmanabhan94]

[Parulkar95]

[Paxson91]

[Paxson94a]

[Paxson94b]

[Postel 80]

[Postel814]

[Postel81b]

[Postel 82]

[Postel 83]

Peter Newman, W.L. Edwards, Robert M. Hinden, Eric
Hoffman, Font Ching Liaw, Tom Lyon, and Greg Minshall.
Transmission of Flow Labelled IPv4 on ATM Data Links.
Internet Request for Comments 1954, May 1996.

Peter Newman, Tom Lyon, and Greg Minshall. “Flow labelled
IP: A connectionless approach to ATM.” In Proceedings of
|IEEE INFOCOM ’96, pages 1251-1260, San Francisco, CA,
March 1996.

John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley
Publishing Company, Reading, MA, 1994.

VenkataN. Padmanabhan and Jeffrey C. Mogul. “Improving
HTTP latency.” In Proceedings of the Second International
World Wide Web Conference, Chicago, IL, October 1994,

Guru Parulkar, Douglas C. Schmidt, and Jonathan Turner. “IP/
ATM: A strategy for integrating [P with ATM.” In Proceedings
of ACM SGCOMM ’ 95, pages 49-59, Cambridge, MA, August
1995.

Vern Paxson. “Measurements of wide area TCP conversations.”
Mastersreport, University of Californiaat Berkeley, May 1991.

Vern Paxson. “Emprically derived analytic models of wide-area
TCP connections.” |[EEE/ACM Transactions on Networking,
2(4):316-336, August 1994,

Vern Paxson. “Growth trends in wide-area TCP connections.”
|EEE Network, 8(4):8-17, July 1994.

Jon Postel. User Datagram Protocol. Internet Request for
Comments 768, August 1980.

Jon Postel. Internet Protocol. Internet Request for Comments
791, September 1981.

Jon Postel. Transmission Control Protocol. Internet Request for
Comments 793, September 1981.

Jonathan B. Postel. Smple Mail Transfer Protocol. Internet
Request for Comments 821, August 1982.

Jon Postel and Joyce Reynolds. Telnet Protocol Specification.
Internet Request for Comments 854, May 1983.

148



[Postel 85]

[Ptolemy96]

[Rekhter6]

[Reynolds94]

[Romanow94]

[ Sandberg85]

[Schmidto3]

[Schulzrinnedg]

[ Shenker96]

[Stevens94]

[Stevens9g]

[Stroustrup91]

Jon Postel and Joyce Reynolds. File Transfer Protocol (FTP).
Internet Request for Comments 959, October 1985.

Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley. Ptolemy software, April
1996. This software is avalable a  http:/
ptolemy.eecs.berkeley.edu/.

Yakov Rekhter, Bruce Davie, Dave Katz, Eric Rosen, and
George Swallow. Tag Switching Architecture Overview.
Internet Draft draft-rfced-info-rekhter-00, September 1996.

Joyce K. Reynolds and Jon Postel. Assigned Numbers. Internet
Request for Comments 1700, October 1994.

Allyn Romanow and Sally Floyd. “Dynamics of TCP traffic
over ATM networks.” In Proceedings of ACM SGCOMM ' 94,
pages 79-88, London, August 1994.

Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh,
and Bob Lyon. “Design and implementation of the Sun Network
Filesystem.” In Proceedings of the USENIX Summer
Conference Proceedings, pages 119-130, Portland, OR, June
1985.

Andrew Schmidt and Roy Campbell. “Internet protocol traffic
analysis with applications for ATM switch design.” ACM
S GCOMM Computer Communication Review, 23(2):39-52,
April 1993.

Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and
Van Jacobson. RTP: A Transport Protocol for Real-Time
Applications. Internet Request for Comments 1889, January
1996.

Scott Shenker, Craig Partridge, and Roch Guerin. Specification
of Guaranteed Quality of Service. Internet Draft draft-ietf-
intserv-guaranteed-svc-06, August 1996.

W. Richard Stevens. TCP/IP Illustrated, Volume 1. Addison-
Wesley Publishing Company, Reading, MA, 1994.

W. Richard Stevens. TCP/IP Illustrated, Volume 3. Addison-
Wesley Publishing Company, Reading, MA, 1996.

Bjarne Stroustrup. The C++ Programming Langauge. Addison-
Wesley Publishing Company, 1991.

149



[Sun Microsystems38]

[Woodruff96]

[Wright95]

[Wroclawski96]

[Zhang93a]

[Zhang93b]

[Zipf49]

Sun Microsystems. RPC: Remote Procedure Call, Protocol
Specification, Version 2. Internet Request for Comments 1057,
June 1988.

Allison Woodruff, Paul M. Aoki, Eric Brewer, Paul Gauthier,
and Lawrence A. Rowe. “An investigation of documents from
the World Wide Web.” In Proceedings of the Fifth International
World Wide Web Conference, Paris, France, May 1996.

Gary R. Wright and W. Richard Stevens. TCP/IP lllustrated,
Volume 2. Addison-Wesley Publishing Company, 1995.

John Wroclawski. Specification of the Controlled-Load
Network Element Service. Internet Draft draft-ietf-intserv-ctrl-
load-svc-03, August 1996.

Hui Zhang and Domenico Ferrari. “Rate-controlled static-
priority queueing.” In Proceedings of IEEE INFOCOM 93, San
Francisco, CA, 1993.

LixiaZhang, Steve Deering, Deborah Estrin, Scott Shenker, and
Daniel Zappala “RSVP. A new resource ReSerVation
Protocol.” 1EEE Network, September 1993.

George Kingdey Zipf. Human Behavior and the Principle of

Least Effort. Hafner Publishing Company, New York, NY,
1949.

150



