
A Mechanism for the Administration of Real-Time Channels 1

A Mechanism for the Administration of Real-Time
Channels1

Bruce A. Mah
bmah@tenet.Berkeley.EDU

The Tenet Group
University of California at Berkeley

and
International Computer Science Institute

Abstract

Future applications will require network services that offer performance
guarantees. We refer to such services as “real-time”, and to network con-
nections offering such guarantees as “real-time channels”. In this report,
we discuss the service description and interfaces for a mechanism for the
administration of real-time channels. We also describe the Real-Time
Channel Administration Protocol (RCAP), which implements this mecha-
nism in the prototype version of the Tenet Real-Time Protocol Suite.

1.0 Introduction

The Tenet Scheme for real-time communications introduces the concept of “real-time
channels”. A real-time channel is a simplex, unicast, network connection with associated
performance guarantees [FerVer89]. Examples of such guarantees are an upper bound on
the maximum end-to-end delay of a packet sent on a particular real-time channel or a
lower bound on the throughput provided to a channel.

We assert that many network applications in the future will require such performance
guarantees in order to provide acceptable service to their users. This need will be particu-
larly acute in the case of continuous media applications, such as those involving digital
video or digital audio services. More details on the requirements of specific applications
can be found in [Ferrari90].

Critical to the operation of real-time channels is a mechanism for their administration or
management. In particular, a means must be developed to create and destroy channels

1. This research was supported by the National Science Foundation under an NSF Graduate Fellowship, the
National Science Foundation and the Defense Advanced Research Projects Agency (DARPA) under
Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives, AT&T Bell
Laboratories, Hitachi Ltd., Hitachi America Ltd., Pacific Bell, the University of California under a MICRO
grant, and the International Computer Science Institute. The views and conclusions contained in this docu-
ment are those of the author, and should not be interpreted as representing official policies, either expressed
or implied, of the U.S. Government or any of the sponsoring organizations.

A Mechanism for the Administration of Real-Time Channels 2

while maintaining the performance required by, and guaranteed to, the clients of the real-
time communication service. The mechanism will need to manage the various resources
used by the channel, such as link bandwidth, packet scheduling time in gateways, channel
identifiers, and so on.

In this report, we present the requirements for a real-time channel administration mecha-
nism and describe the necessary software interfaces to other network protocol entities. We
then present the decomposition of the functionality used in the design of the Real-Time
Administration Protocol (RCAP), which implements this mechanism, and describe the
components, implementation, and operation of the prototype version of the RCAP soft-
ware.

2.0 Service Description

In this section, we describe the basic functionality for a mechanism for administering real-
time channels. The three main services to be performed are channel creation (referred to as
“establishment”), channel destruction (“teardown”), and channel status reporting.

As mentioned previously, real-time channels are assumed to be simplex, unicast connec-
tions.2 Therefore, a channel has a fixed source (also known as the “sender”) and a fixed
destination (also referred to as the “receiver”). The direction along the channel’s path in
which data travels is referred to as “downstream”, while we call the direction opposite the
data flow “upstream”.

2.1 Channel Establishment

Channel establishment is the process of creating a real-time channel according to the per-
formance requirements requested by client applications. This process involves several dif-
ferent functions.

One function is that of routing, the process of determining the path of a real-time channel
from the source to the destination. Routing mechanisms may range from a simple, static,
table-driven routing algorithm to more sophisticated ones that choose routes depending on
the resource utilization and availability on each of the links and nodes in a network.
Routes can be decided at the channel sources or on a hop-by-hop basis. We assume that
routes are fixed at connection establishment time.3

The Tenet Scheme calls for admission control at channel establishment time in order to
guarantee the required performance of existing channels (as well as that of the channel
currently being established). The network can accept channels whose presence will not
cause the performance guarantees of existing channels to be violated; others are rejected.

2. Ongoing research in the Tenet Group is aimed at extending the real-time channel paradigm to duplex and/
or multicast connections.

3. Recent research addresses the issues involved in rerouting real-time channels for load-balancing or fault
recovery [PaZhFe92].

A Mechanism for the Administration of Real-Time Channels 3

Any channel administration mechanism must perform admission control tests at channel
establishment time to protect the network from potential overload.

The Tenet Scheme proposes specific tests for the case of a network whose nodes use the
Earliest Due Date (EDD) scheduling discipline for their bottleneck resources [FerVer89].
These resources are usually assumed to be associated with the output links on each node,
as in the case of a switch with output queueing, but they could also be node-wide
resources, such as a CPU in a switch or gateway. Although different tests are required for
different scheduling disciplines, [Ferrari92] postulates that these admission control tests
can be developed for any member of a wide class of service disciplines.

Resource allocation is the next logical action of the channel establishment process. In
some networks, this step may merely consist of adjusting bookkeeping entries in the nodes
in order to provide accurate data for the admission control tests. In other cases, resource
allocation may be more complex (for example, when it is necessary to create data-link
layer virtual circuits).

Resource allocation in the Tenet Scheme consists of an initial phase in which the maxi-
mum possible resources are allocated to the channel, followed by a relaxation phase in
which excess resources are deallocated and released for other uses. For example, a new
channel is initially allocated the lowest delay bound possible in each node. The resulting
initial end-to-end delay bound may be much lower than originally requested by the client.
During relaxation, the local delay bounds on some or all of the nodes may be adjusted
upwards to release the excess “delay bound resource”.

The entities performing data delivery (for example, network layer protocol software) need
to be informed of the creation of the new channel. The necessity for this action is particu-
larly apparent in the case that data delivery is performed by entities distinct from those
providing the service of channel establishment. This situation exists, for example, in the
Tenet Real-Time Protocol Suite.

Finally, the clients of the data delivery service (those requesting communication) need to
be notified of the existence of the new channel. They also need to be provided with identi-
fiers (generally referred to as “channel identifiers”) to use when referring to the channel.

2.2 Channel Teardown

Channel teardown is the process of destroying a real-time channel and releasing its
resources for re-use. Although the teardown procedure is simpler than that of establish-
ment, it also involves several distinct actions.

The most critical action of channel teardown is the deallocation of the channel’s resources.
This action is necessary so that the various network resources, such as link bandwidth, can
be reallocated to other channels in response to new channel establishment requests. If
some resources cannot somehow be deallocated, they cannot be used by new channels,
and new channel establishment requests may be unnecessarily rejected.

A Mechanism for the Administration of Real-Time Channels 4

Another required action is the notification of the data delivery entities. They must be told
that the channel in question no longer exists. In some cases this action is coupled with the
deallocation of some resource, such as a channel identifier number or virtual circuit identi-
fier.

Finally, the client applications using the channel need to be notified that the channel has
been torn down. Such an action can be made explicit, via some sort of notification mecha-
nism in the operating system, or it can be implicit, perhaps in the form of an error message
if an application attempts to send or receive data on the non-existent channel. Presumably
the latter method of notification can always be used as a fallback.

2.3 Channel Status Reporting

A third function to be performed by a channel administration mechanism is that of report-
ing the status of a channel. While not necessary for the correct operation of the network,
such a function can be invaluable when attempting to design, implement, and debug soft-
ware that either uses or implements various pieces of a real-time network service. In par-
ticular, it can be helpful to know the resource utilization and corresponding performance
guarantees at each node along a channel’s path.

3.0 Software Interfaces

In this section we describe the software interfaces to various other components of a real-
time network service. There are three interfaces that need to be considered, the interface
between the channel administration mechanism and its client applications, the interface to
the data delivery entities, and the interface between channel administration entities located
on different network nodes. The relationship between the different network components,
and their interfaces, is shown in Figure 1.

We note that information regarding the state of the resources available at each node is, in
general, scattered throughout the network. It is therefore appropriate to carry out channel
management as a distributed computation involving all of the nodes along a channel’s
path. The decomposition of functionality discussed here assumes that this is indeed the
case, that channel management is carried out in a distributed manner.

3.1 Interface to Client Applications

The interface to client applications provides the means by which application programs can
request channel management services. It is the only application-visible portion of the
channel administration mechanism.

We believe that using a procedure call-based interface provides the most natural service in
typical UNIX-like programming environments. Other interface paradigms, such as mes-
sage-passing between the application and the service, seem inappropriate as they tend to
complicate the use of the channel administration service without providing any real bene-
fits in functionality. We note that the closest analog to channel administration in BSD-style

A Mechanism for the Administration of Real-Time Channels 5

UNIX systems is the set of socket management system calls, for example socket(),
bind(), and connect(). These primitives, while technically not procedure calls, use
the same style of software interface [Leffler89].

3.2 Interface to Data Delivery Mechanisms

Part of the process of creating or destroying real-time channels is notifying the data deliv-
ery mechanisms on each node. In the case of channel establishment, notification requires
the new channel parameters, incoming and outgoing channel identifier and port correspon-
dences, and so on. Channel teardown merely needs the identification of the channel to be
destroyed.

The software interface that enables this notification is particularly important in situations
where channel administration and data delivery are performed by different protocol enti-
ties or modules of an operating system. The particular type of mechanism to be used here
is not critical, as the mechanism generally will be constructed only once per implementa-
tion. As it is not visible to the client, the choice of paradigm for this interface should not
impact applications or users in any way.

3.3 Interface to Other Administration Entities

We assume that channel management is to be carried out in a distributed manner, as the
required information on resource availability in the network is also distributed. An inter-
face between the channel management entities on each of the nodes is therefore necessary
so that they can communicate during channel management operations.

FIGURE 1. Software Interfaces to a Real-Time Channel Administration
Mechanism

Channel Administration
Mechanism

Client
Application

Data Delivery
Entity

Data Delivery
Entity

Client
Application

Client
Application

To Other
Nodes

To Other
Nodes

A Mechanism for the Administration of Real-Time Channels 6

A procedure call-based mechanism (in this case, some form of RPC) would have the ben-
efit of simplicity; however this paradigm has the disadvantage of requiring synchronous,
lock-step actions between the participants. This kind of communication may not be appro-
priate for a channel administration entity, which may have multiple operations pending
simultaneously. Because of this need for asynchrony, a message-passing paradigm is the
best suited for this situation.

We note that in an object-oriented distributed system such as Clouds [Dasgupta90], some
sort of object migration, where channels are represented by objects, may be appropriate.
Not having such an environment available to us, we did not investigate this possibility fur-
ther.

4.0 Decomposition

We now describe the decomposition of functionality used in the design of the first proto-
type implementation of the Real-Time Channel Administration Protocol (RCAP). The
design was produced by Anindo Banerjea and the author, with the assistance of other
Tenet Group members during Spring 1991, and is fully documented in [BanMah91a]. This
software performs the channel administration functions in the Tenet Real-Time Protocol
Suite.

Our model of the environment is a packet-switching internetwork, possibly heteroge-
neous. The various subnets making up the internetwork consist of nodes joined by point-
to-point links.4 Dual-homed nodes (those that have interfaces on more than one network)
are assumed to be able to route packets between networks. Each node is assumed either to
be a general purpose computer (such as a workstation) or a special-purpose network node
capable of sending and receiving packets and handling channel administration functions,
perhaps with the assistance of another processor. An example of the latter is the XUNET 2
ATM switch, which relies on its attached switch controller to perform virtual circuit and
channel administration functions [Fraser92].

4.1 Client Interface

The client interface portion of RCAP is the portion visible to the client entities (the appli-
cation programs). It exports various primitive operations so that applications can request
various channel management services. The operations exported by the current RCAP
design are listed in Table 1.

4.2 Resource Manager

A resource manager is responsible for allocating and accounting for the various resources
at each node in the network. In accordance with our assumption of distributed channel

4. Appropriate modifications can be made to handle the case of broadcast-style networks.

A Mechanism for the Administration of Real-Time Channels 7

administration, resource management is also distributed, with each node’s resources being
managed exclusively by a resource manager running on that node.

The state information contained within the resource manager (such as the allocation and
availability of resources) should be protected from tampering by the client applications on
each node. This can easily be solved in a UNIX-like environment by running the resource
manager in a separate process from any of the client applications. This approach is, in fact,
taken in the prototype RCAP implementation. Similar steps could be taken in other operat-
ing system environments.

5.0 The Tenet Real-Time Protocol Suite

Before presenting the details of the Real-Time Channel Administration Protocol (RCAP),
it is first necessary to describe the Tenet Real-Time Protocol Suite, which contains and
uses RCAP.

The Tenet Real-Time Protocol Suite is a set of communication protocols designed to pro-
vide real-time communication (with performance guarantees) in a packet-switching inter-
network [Lowery91]. The components of the Suite (and their relationships) are pictured in
Figure 2. Of particular interest is the separation of the functions of data delivery and con-
trol. The portion of the protocol stack on the left of the figure reflects the traditional layer-
ing of network protocols, while the arrows going to and from RCAP on the right of the
diagram show the flow of channel administration control.

Primitive Description

establish_request The sending client invokes this primitive to request a new
real-time channel. It provides its performance requirements,
traffic characteristics, and addressing information. RCAP
returns a unique channel identifier if the request succeeds.

register A receiving client uses the register primitive to indicate to
RCAP that it is ready to receive connections on a given port.

receive_request This primitive, when invoked by the receiving client, causes
the receiving client to wait until an establishment request
arrives from a sending client. It then returns the establish-
ment from that request, allowing the receiver to accept or
deny the request.

accept The receiving client invokes the accept primitive to indicate
acceptance of an establishment request.

deny The receiving client uses the deny primitive to reject an
establishment request.

unregister This primitive is used by a receiving client to indicate that it
will no longer accept any requests on a port.

status The sender can request information about the state of a
channel by invoking the status primitive.

close Either the sending or receiving client can invoke the close
primitive to close a channel and release its resources.

TABLE 1. RCAP Service Primitives Available to Client Programs

A Mechanism for the Administration of Real-Time Channels 8

The Real-Time Channel Administration Protocol (RCAP) handles connection-level chan-
nel management for the Protocol Suite in response to requests from the application pro-
grams. It performs the three channel management functions of establishment, teardown,
and status reporting described earlier. RCAP communicates with the network-layer and
data link-layer protocol entities at each node along the channel’s path, as well as with the
transport-layer protocol entities at the channel’s endpoints. These control paths are shown
by the arrows in the protocol stack.

The Real-Time Internet Protocol (RTIP) provides for connection-oriented, performance-
guaranteed, unreliable delivery of packets [VerZha91]. It occupies a place analogous to IP
in the Internet Protocol suite. In fact, an earlier design of RTIP, described in [Lowery91],
was based on IP and supported real-time communication using the IP options fields (thus
the origins of this protocol’s name).

The services of RTIP are used by two different transport-layer protocols. The Real-Time
Message Transport Protocol (RMTP) provides the service of connection-oriented, perfor-
mance-guaranteed, unreliable delivery of messages [VerZha91]. This transport layer is
quite lightweight. Two features frequently associated with transport layers, connection
management and reliable delivery through retransmission, are absent from this protocol
(the former is provided by RCAP and the latter is incompatible with the notion of guaran-
tees on message delay). Thus, the main functions of this transport layer are flow control
(accomplished by rate control) and the fragmentation and reassembly of messages.

The Continuous Media Transport Protocol (CMTP) is designed to support the transport of
periodic network traffic with performance guarantees. By using the knowledge that the
data to be transmitted is periodic in nature, CMTP can gain more effective use of the net-

FIGURE 2. The Tenet Real-Time Protocol Suite

Client Application

Continuous Media
Transport Protocol

(CMTP)

Real-Time Message
Transport Protocol

(RMTP)

Real-Time Internet Protocol (RTIP)

Device Drivers

Real-Time
Channel

Administration
Protocol
(RCAP)

A Mechanism for the Administration of Real-Time Channels 9

work. The prototype implementation also uses the knowledge of periodicity to implement
implicit send and receive operations. Data is passed to and from the client application
using shared memory; explicit send and receive system calls are unnecessary because both
the client and the operating system know when data needs to be sent or received [Wol-
Mor91].

The possibility of network failures requires a reactive network control mechanism, in
addition to the proactive mechanism provided by RCAP. The Real-Time Control Message
Protocol (RTCMP) is intended to address this need. One of its main functions is to facili-
tate the rerouting of channels whose paths have been interrupted due to a failure. The
exact functionality and interfaces for RTCMP have not been well-defined yet, so it has not
been included in Figure 2. RTCMP is planned for inclusion in the next version of the
Tenet Real-Time Protocol Suite.

6.0 RCAP Implementation

We now describe the first version of RCAP, designed and implemented by Anindo Baner-
jea and the author during 1991 and 1992. The software is divided into two distinct sections
of code, a library that is to be linked into each client application and a daemon process that
runs on each node, independent of the applications. The relationship between the library,
daemon, and associated application programs is shown in Figure 3.

6.1 The RCAP Library

The RCAP library implements the client interface portion of the channel administration
mechanism. It exports a set of procedures that can be called from within a user program to
request various channel management functions. The procedures correspond roughly to the
function primitives enumerated earlier; these procedures are shown in Table 2.

The RCAP library calls have rough analogs in the BSD 4.2 UNIX networking system
calls. RcapEstablishRequest() is similar to the BSD connect() system call,
although the former, by necessity, requires much more information on the connection to be
established. RcapRegister() is almost identical in function to BSD’s listen()
call. The combination of RcapReceiveRequest() and RcapEstablishRe-
turn() is roughly analogous to the BSD accept() system call (however, applications
using the BSD system calls normally do not have the opportunity to reject a connection
request once they have received it). There are no counterparts for the RcapUnregis-
ter() and RcapStatusRequest() library calls. The RcapCloseRequest() call
is much like the BSD close() system call, although the latter is capable of operating on
many more objects than network connections (files and pipes, for example).

In current implementations, the RCAP library is a standard library that is linked into client
applications at load-time. A header file provides function prototypes and data structure
definitions needed by the clients.

A Mechanism for the Administration of Real-Time Channels 10

The RCAP library communicates with the RCAP daemon process running on the local
node via BSD-style TCP sockets. The library and daemon communicate using messages
transmitted over the sockets; the messages themselves will be described in Section 6.2.
We opted to use TCP sockets as the method of message transport primarily because they
provide reliable delivery of the RCAP control messages. Another consideration was that
the socket mechanism was supported and implemented by all the operating systems we
could foresee using in the near future. The RCAP software is, however, easily modifiable
to use a different form of message transport.

The RCAP library contains very little state information, and none at all related to the state
of the real-time channels. As this library will be running in the same address space as the
application programs, each application program can, at least potentially, change informa-
tion associated with the library. Therefore, we chose not to trust the library with any infor-
mation that could affect the operation of the network. It is convenient to think of the
RCAP library as simply a specialized set of Remote Procedure Call (RPC) client stubs.

FIGURE 3. The RCAP Library and Daemon

RCAP Library

RCAP Daemon

Application

RCAP Library

Application

RCAP Library

Application

To Neighboring
Node

To Neighboring
Node

One Network Node

A Mechanism for the Administration of Real-Time Channels 11

6.2 The RCAP Daemon

There is one RCAP daemon process running on each node. It manages the resources (such
as link bandwidth) associated with the local node, in response to requests for channel
establishment and channel teardown.

Each RCAP daemon communicates using control messages sent over the TCP control
connections. Each message has an implicit direction of travel associated with it, either
“upstream” (towards the sending application) or “downstream” (towards the receiving
application). Table 3 shows the messages used between the RCAP daemons and between
the daemons and the instances of the RCAP library.

The RCAP library and daemon use an additional set of messages to communicate within a
single node. These messages implement a simple cross-domain procedure call facility for
RCAP operations contained entirely inside a single network node; each of these messages

Library Function Description

RcapEstablishRequest() Request to establish a new channel. Inputs are the traffic
characteristics, performance requirements, addressing infor-
mation, and optional control data for higher-level control
functions. Output is a channel identifier if establishment
was successful or an error code if establishment failed.

RcapRegister() The receiver makes this procedure call to indicate its will-
ingness to accept new connections on a given port. Sending
client applications will use an ordered pair consisting of a
network address and a port number to specify the destina-
tion of a real-time channel.

RcapReceiveRequest() The receiver uses this procedure to actually obtain an
incoming establishment request. Any such request has
passed all admission control tests within the network, but
the receiving client has the ultimate decision as to whether
or not the channel establishment will succeed or fail.

RcapEstablishReturn() This function combines the accept and deny primitives. The
receiver uses this function to indicate final acceptance or
denial of the channel (the receiver has the power to “veto” a
channel establishment made to it, even if the network would
otherwise permit the channel).

RcapUnregister() The receiving client uses this function to indicate that it is
no longer willing to accept any new connections on a given
port. Existing real-time channels are unaffected.

RcapStatusRequest() This function provides a means for the sending client to
obtain the status of an already established channel. It returns
a buffer with network-dependent data structures giving the
resource usage and parameters of the channel at each of the
nodes along its path.

RcapCloseRequest() Either the sending or receiving clients can use this function
to initiate a channel teardown.

TABLE 2. RCAP Exported Functions

A Mechanism for the Administration of Real-Time Channels 12

also has an implicit direction of travel to an RCAP library or to the local RCAP daemon.
They are described briefly in Table 4.

6.3 Implementation Notes

The prototype version of RCAP was implemented by Anindo Banerjea and the author dur-
ing 1991 and 1992. It is written in C, and initially ran on DECstation 5000 series comput-
ers using the Ultrix operating system (a BSD UNIX derivative). The prototype RCAP
daemon consists of eleven thousand lines of C source code, while the RCAP library is
composed of two thousand lines of C.

As can be inferred, the majority of the work involved the RCAP daemon. In an attempt to
balance the workload of the implementors, we decided to split the RCAP daemon in two
parts for implementation purposes. Roughly, one part consisted of the real-time admission
control tests and resource manager, while the other contained the interprocess communica-
tion code necessary to communicate with other nodes and with various instances of the

Message Name Direction Description

establish_request Downstream A control message sent from a source client
requesting establishment of a new channel.
Causes admission control tests to be run at
each node along the channel’s path and
resources to be tentatively allocated for the
channel.

establish_accept Upstream Indicates acceptance of a new channel. Causes
relaxation of resources at each node along the
channel’s path and communicates establish-
ment of the channel to the data delivery enti-
ties.

establish_denied Upstream Indicates that a channel establishment request
was rejected, either inside the network or by
the destination application. Causes the deallo-
cation of all resources previously allocated to
the channel.

status_request Downstream A message sent by the source application
requesting the status of the channel at each
node. Information on the local channel param-
eters is appended to the message as it travels
down the channel’s path towards the destina-
tion application.

status_report Upstream Contains local channel parameters gathered by
a status_request message. This message
is merely used to convey these parameters
back to the sending application.

close_request_forward Downstream A request from the sending application to
close an existing channel.

close_request_reverse Upstream A request from the receiving application to
close an existing channel.

TABLE 3. RCAP Control Messages

A Mechanism for the Administration of Real-Time Channels 13

library. One of the implementors (Banerjea) implemented the former side of the daemon,
while the other (the author) wrote the IPC code and the RCAP library. The two “sides” of
the RCAP daemon communicate across a send/receive interface, by which the resource
manager sends or receives RCAP control messages.

The above decomposition was intended to make the RCAP software easy to implement.
The resource manager and admission control tests were developed and largely tested in
isolation, while the IPC module and library were written and tested without the need for
the other components of the RCAP daemon.

However, we discovered that the splitting of the RCAP daemon is somewhat less than
ideal. In particular, the simple send/receive interface does not allow for any sharing of
information about the various real-time channels. The common state is necessary to sup-
port various IPC functions that rely on the state of channels (to ensure, for example, that
control messages are sent correctly to the next upstream or downstream node along the
path of a channel). The result is that there is quite a bit of duplication of information (and
effort) as the two “sides” of the RCAP daemon both attempt to maintain an accurate pic-
ture of the channels being managed. As an extreme example it is possible for an incoming
RCAP control message to be converted from the network representation to the host-
dependent representation as many as three times as it is being processed by the daemon.

The RCAP software does have the advantage of being quite portable, as it has few depen-
dencies on the remainder of the protocol suite or on the host operating system. The initial
RCAP implementation was ported to run on SunOS by Sun Microsystems, HP-UX by
Hewlett-Packard, and IRIX by Silicon Graphics, on their respective hardware platforms,
with few or no changes necessary. A port to Sprite, a UNIX-like operating system devel-

Message Name Direction Description

local_register To Daemon “Registers” an application as a destination
willing to receive channel establishment
requests on a given port.

local_unregister To Daemon “Unregisters” a receiving application, as it is
no longer willing to handle incoming channel
establishment requests.

local_receive_request To Daemon Used by a receiving application to get a chan-
nel establishment request from the local
RCAP daemon.

local_return_parms To Library Returns the channel parameters of a pending
channel establishment. Sent from the daemon
to the library at a channel’s destination so that
the receiving application can decide whether
or not it wants to accept the channel.

local_establish_return To Daemon Message indicating a final accept/reject deci-
sion by a channel destination.

local_return To Library A message used to communicate return values
from various operations back to an instance of
the RCAP library and its attached application.

TABLE 4. “Local” RCAP Control Messages

A Mechanism for the Administration of Real-Time Channels 14

oped at the University of California at Berkeley for the DECstation and SparcStation plat-
forms, is under way with promising results. Most changes were only needed to
accommodate operating system and compiler idiosyncracies.

RCAP first became operational in the summer of 1992. Shortly afterwards we were able to
use it to establish and manage RMTP/RTIP channels between DECstations on a small
FDDI testbed network.

Currently, Anindo Banerjea is continuing the refinement and debugging of the real-time
tests and resource management, as well as trying to tune the current RCAP implementa-
tion to the FDDI testbed (the real-time tests rely on a characterization of each machine and
link in the network, which must be generated from measurements and analysis). The
author is preparing to adapt RCAP to establish real-time channels between the hosts on a
high-performance HIPPI network recently constructed at Berkeley.

7.0 Operations

In this section, we describe, in an informal manner, how the different RCAP components
perform the task of channel management. As mentioned previously, we assume an envi-
ronment of general-purpose computers connected by a packet-switching internetwork; the
internetwork is composed of various subnets, possibly heterogeneous, connected by gate-
ways or routers.

7.1 Channel Establishment (Receiver)

Before any communication can take place on a channel, an application must be present to
act as a receiver on that channel. Applications indicate their willingness to do so by “regis-
tering” themselves with the RCAP service. The flow of control in registration (and corre-
sponding unregistration) is shown in Figure 4.

The potential receiver executes an RcapRegister() library call, indicating the port
number for which it will receive establishment requests and act as a destination. Note that
an application may be a receiver for channels on more than one port, while simultaneously
establishing and sending data on channels to other applications.

The RCAP library linked to the application constructs a local_register control mes-
sage, which it then sends to the local RCAP daemon. The library (and hence the applica-
tion process) then blocks, waiting for a response from the daemon.

The daemon adjusts its data structures to reflect the application’s status as a potential
channel destination, and sends a local_return control message back to the library to
acknowledge the request. The library call then returns.

Once registered, the application then has the opportunity to process channel establishment
requests directed towards its port. The process is illustrated in Figure 5.

A Mechanism for the Administration of Real-Time Channels 15

To get a channel establishment request, the application executes an RcapReceiveRe-
quest() library call. This message indicates the port number for which the request
should be received; of course, the application must already be registered for that port.

The RCAP library code then builds a local_receive_request message, which it
sends to the local daemon. The daemon looks for outstanding establish_request
messages (indicating pending channel establishments) for the port in question. If such a
message is found, it returns a local_return_parms message to the calling library
containing the parameters for a pending channel establishment request. The RcapRe-

ApplicationRCAP LibraryRCAP Daemon

(Procedure Returns)

(Procedure Returns)

RcapRegister()local_register

local_return

local_unregister RcapUnregister()

local_return

FIGURE 4. Registering and Unregistering a Receiving Application

RCAP LibraryRCAP Daemon

(Procedure Returns)

(Procedure Returns)

RcapReceiveRequest()local_receive_request

local_return_parms

establish_accept or
RcapEstablishReturn()

local_return

establish_denied

Application

establish_request

establish_accept or
establish_denied

FIGURE 5. Channel Establishment (Receiving End)

A Mechanism for the Administration of Real-Time Channels 16

ceiveRequest() library call then returns to the application. If no such message is
found, the RCAP library stores the local_receive_request for a time when a
channel establishment request arrives. The application is blocked until it receives the
local_return_parms message.

The receiving application has the ultimate say on whether or not the pending real-time
channel is to be established; it indicates its decision via an RcapEstablishReturn()
library call. The library transmits either an establish_accept or establish_de-
nied control message to the local daemon. The daemon forwards the message upstream
and returns a local_return message to the library.

Assuming the destination application accepted its end of the connection, it can now read
data from its end of the real-time channel, invoking whatever interface is defined for the
data delivery protocols being used. For example, when using the prototype implementa-
tion of RMTP and RTIP, a special type of socket is provided so that the receiving applica-
tion can use the standard read() series of system calls.

The process of unregistering an application from a port is simply the opposite of register-
ing, and the control messages exchanged are analogous. This process is illustrated in the
lower part of Figure 4.

7.2 Channel Establishment (Sender)

According to the current Tenet Scheme, channel establishment is initiated by the sender,
as illustrated in Figure 6.

A potential sender wanting to establish a real-time channel must first obtain the network
address and port number of the receiving application. The mechanisms for doing so are
beyond the scope of this work; we envision that, ultimately, some sort of nameserver will

RCAP LibraryApplication

(Procedure Returns)

establish_request

RcapEstablishRequest()

establish_accept or
establish_denied

RCAP Daemon

establish_request

establish_accept or
establish_denied

FIGURE 6. Channel Establishment (Sending End)

A Mechanism for the Administration of Real-Time Channels 17

provide this kind of location information. For the moment, we assume “well-known” ports
and network addresses.

The sending application makes an RcapEstablishRequest() library call. This pro-
cedure call has as its arguments the network address and port number of the destination
application, the traffic characteristics of the sender’s data, and the performance require-
ments necessary to the application. We assume that the latter two parameter vectors are
either known to the application or can be obtained via some network service.

The attached RCAP library transmits an establish_request message to the local
RCAP daemon. The message travels along the future channel’s path towards the receiver,
transmitted between the RCAP daemons along their control connections. Currently, rout-
ing is done by a static routing table, loaded at daemon start-up time. The table is similar in
format to those found in BSD UNIX kernels.

At each node, the necessary admission control tests are run. If the tests succeed, resources
are tentatively reserved for the real-time channel and a record containing the local channel
parameters is appended to the establish_request message.5 The new estab-
lish_request message is then forwarded to the next node. The flow of control mes-
sages through each RCAP daemon during channel establishment is shown in Figure 7.

If at any point along the path, an RCAP daemon decides that the channel cannot be sup-
ported by the network, an establish_denied message is returned to the sender. It
causes the resources allocated to the channel in progress to be released. When the message
reaches the source node, its daemon passes the establish_denied message to the
sending application’s library, which then returns an error code to the application. The
application may then retry the establishment if it so desires.

5. In the case of a heterogeneous internetwork, a hierarchical abstraction is used to summarize the network-
dependent parameters for use by the end-to-end channel establishment processing. This abstraction, how-
ever, does not substantially change the description of the channel administration mechanism. Details of this
process may be found in [BanMah91b].

RCAP Daemon

establish_request

establish_request

establish_accept or
establish_denied

establish_accept or
establish_denied

FIGURE 7. Channel Establishment (In RCAP Daemon)

A Mechanism for the Administration of Real-Time Channels 18

When the receiving application receives the establish_request message, the dae-
mon on that node has the opportunity to make the final establishment decision, as previ-
ously described in Section 7.1. If the destination is willing to receive data along this
channel, it begins sending an establish_accept message, hop-by-hop via each
RCAP daemon, backwards along the channel’s path towards the source. At each hop along
the reverse path, resources for the new channel may be relaxed, allocation confirmed, and
the data delivery entities notified of the new channel setup.

When the establish_accept message reaches the channel’s source node, the local
RCAP daemon then passes the message back to the sending application, unblocking the
process. The application then obtains the channel identifier for the channel from the
returned values from the library call. The source application can then begin sending data
along the new channel.

We note that although RCAP was designed for Tenet-style real-time channels, which cur-
rently must be established beginning with the sender, it would be simple to adapt the chan-
nel administration mechanism (and the RCAP implementation) to perform receiver-
initiated channel establishment or to operate on duplex channels.

7.3 Channel Status Request

RCAP provides a means for the sending side of an existing channel to determine various
channel parameters at each of the nodes along its path. The control messages used during
a status request are shown in Figure 8.

The sending application initiates this process using the library call RcapStatusRe-
quest(). The RCAP library generates a status_request message, which it then
passes to the local RCAP daemon. At each node in the network, the local channel parame-
ters (such as buffer allocation and local deadline) are marshalled into a record, which is
then appended to the message. The status_request message is then forwarded to the
next downstream node.

RCAP LibraryApplication

(Procedure Returns)

status_request

RcapStatusRequest()

FIGURE 8. Channel Status Reporting

RCAP Daemon

status_request

status_report

status_report

A Mechanism for the Administration of Real-Time Channels 19

The RCAP daemon at the channel’s destination node “turns around” the message, chang-
ing it into a status_report message, which is then passed unchanged, via the RCAP
daemons, back upstream towards the channel’s source. The daemon at the source node
then passes the message to the generating RCAP library; this act allows the application to
unblock and continue execution.

The status information is returned to the sending application in the form of records in a
buffer. The application is responsible for interpreting the contents of the records. The
structure of the records is network-dependent. In the case of a heterogeneous internet-
work, the application may need to interpret several different kinds of status records. To
provide for the possibility that an application may not be able to interpret all types of
records, they are structured so that the application can ignore those it cannot understand.

The usefulness of this status information may appear limited, since the application needs
to be able to interpret the records for each and every network type. However, we note that
the status information is generally so specialized with respect to each kind of network (for
example, the local scheduling parameters at each node) that any kind of network-indepen-
dent summary would be meaningless. As this facility is only intended to aid in network
and protocol testing, we accepted this minor shortcoming.

7.4 Channel Teardown

Channel teardowns may be initiated either by the sender or by the receiver. The only oper-
ational difference is the control messages exchanged (due to the implicit message direc-
tion of each message type). The actions involved in a channel teardown are diagramed in
Figure 9.

The application initiating the teardown makes an RcapCloseRequest() library call,
passing the appropriate channel identifier. The RCAP library then sends either a clos-
e_request_forward message (if the sender initiated the teardown) or a close_re-
quest_reverse message (if the receiver initiated the teardown) to the local RCAP
daemon.

RCAP LibraryApplication

(Procedure Returns)

close_request_forward orRcapCloseRequest()

RCAP Daemon

close_request_forward or

local_return

close_request_reverse

close_request_reverse

FIGURE 9. Channel Teardown

A Mechanism for the Administration of Real-Time Channels 20

The daemon then releases the resources it had allocated to the channel and forwards the
message in the appropriate direction. The process repeats until the teardown message has
reached the opposite end of the path. No confirmation message is sent or required.

8.0 Conclusion

In order to properly manage network resources and connections, a communication service
offering performance guarantees requires a mechanism to manage its real-time channels.
In this paper we described the functionality and interfaces to a channel administration
mechanism for the Tenet Scheme for real-time communications. We then described the
decomposition, structure, and operation of the prototype implementation of the Real-Time
Channel Administration Protocol, which provides the channel administration functions in
the Tenet Real-Time Protocol Suite.

9.0 Acknowledgments

The author gratefully acknowledges the assistance of Professors Domenico Ferrari and
Randy Katz for their helpful comments and suggestions, also the support and ideas of the
past and present members of the Tenet Group. Special thanks to Anindo Banerjea, co-
designer and co-implementor of RCAP, for his insights and efforts.

10.0 References

[BanMah91a] A. Banerjea and B. Mah. “The Design of a Real-Time Channel
Administration Protocol”, unpublished report, University of Cali-
fornia at Berkeley and International Computer Science Institute,
Berkeley, California, May 1991.

[BanMah91b] A. Banerjea and B. Mah. “The Real-Time Channel Administration
Protocol”, Proc. Second Int’l. Workshop on Network and Operating
System Support for Digital Audio and Video, Heidelberg, Germany,
November 1991.

[Dasgupta90] P. Dasgupta, R. Chen, S. Menon, M. Pearson, R. Ananthanaray-
anan, U. Ramachandran, M. Ahamad, R. LeBlanc, W. Appelbe, J.
Bernabéu-Aubán, P. Hutto, M. Khalidi, and C. Wilkenloh. “The
Design and Implementation of the Clouds Distributed Operating
System”, USENIX Computing Systems, Vol. 3, No. 1, Winter 1990.

[Ferrari90] D. Ferrari. “Client Requirements for Real-Time Communication
Services”, Request For Comments 1193, November 1990.

[Ferrari92] D. Ferrari. “Real-Time Communication in an Internetwork”, Report
TR-92-001, International Computer Science Institute, Berkeley,
California, January 1992.

A Mechanism for the Administration of Real-Time Channels 21

[FerVer89] D. Ferrari and D. Verma. “A Scheme for Real-Time Channel Estab-
lishment in Wide-Area Networks”, IEEE Journal of Selected Areas
on Communications SAC-8, April 1990.

[Fraser92] A. Fraser, C. Kalmanek, A. Kaplan, W. Marshall, and R. Restrick.
“Xunet 2: A Nationwide Testbed in High-Speed Networking”,
Proc. INFOCOM ’92, Firenze, Italy, May 1992.

[Leffler89] S. Leffler, M. McKusick, M. Karels, J. Quarterman. The Design
and Implementation of the 4.3BSD UNIX Operating System. Addi-
son-Wesley Publishing Company, Inc., Reading, Massachusetts,
1989.

[Lowery91] C. Lowery. “Protocols for Providing Performance Guarantees in a
Packet-Switching Internet”, Report TR-91-002, International Com-
puter Science Institute, Berkeley, California, January 1991.

[PaZhFe92] C. Parris, H. Zhang, and D. Ferrari. “A Mechanism for Dynamic
Re-routing of Real-time Channels”, Report TR-92-053, Interna-
tional Computer Science Institute, Berkeley, California, August
1992.

[VerZha91] D. Verma and H. Zhang. “Design Documents for RTIP/RMTP”,
unpublished report, University of California at Berkeley and Inter-
national Computer Science Institute, Berkeley, California, May
1991.

[WolMor91] B. Wolfinger and M. Moran. “A Continuous Media Data Transport
Service and Protocol for Real-Time Communication in High Speed
Networks”, Proc. Second Int’l. Workshop on Network and Operat-
ing System Support for Digital Audio and Video, Heidelberg, Ger-
many, November 1991.

