
Abstract

The workload of the global Internet is dominated by the
Hypertext Transfer Protocol (HTTP), an application pro-
tocol used by World Wide Web clients and servers. Simula-
tion studies of IP networks will require a model of the
traffic patterns of the World Wide Web, in order to investi-
gate the effects of this increasingly popular application.
We have developed an empirical model of network traffic
produced by HTTP. Instead of relying on server or client
logs, our approach is based on packet traces of HTTP con-
versations. Through traffic analysis, we have determined
statistics and distributions for higher-level quantities such
as the size of HTTP files, the number of files per “Web
page”, and user browsing behavior. These quantities form
a model can then be used by simulations to mimic World
Wide Web network applications.

1  Introduction

Simulations are a popular tool for the evaluation of
computer networks. To yield useful data, however, they
require accurate models of the system under study and its
expected workload. In particular, workloads need to cap-
ture various characteristics of network applications. While
a number of synthetic workloads have been constructed
for more traditional types of network traffic (such as
remote logins and file transfers), new applications require
the development of new traffic models.

One such example is the World Wide Web, a popular
approach to retrieving information in the global Internet.
The Web (along with its associated Hypertext Transfer
Protocol) has come to strongly influence the nature of
Internet network traffic.1 To simulate networks under con-

1.  The last NSFNET traffic measurements in April 1995 showed that
HTTP was the leading source of backbone network traffic, measured both
by the number of bytes and number of packets transferred [22].

temporary Internet traffic loads, we therefore require a
model of this rapidly-growing application.

Section 2 of this paper provides background on the
World Wide Web and HTTP. In Section 3, we describe
some measurement methodologies used in prior studies of
the Web and other Internet applications; we describe our
actual approach to measurement-gathering in Section 4.
Section 5 describes the various components of our model.
We present our experimental results and apply them to our
model in Section 6. In Section 7, we discuss the represen-
tation and use of our model’s components.

2  Background

The World Wide Web (frequently shortened to WWW
or Web) is a collection of documents and services available
to the global Internet. Servers furnish these documents on
request to clients (also known as browsers). Each docu-
ment, or page, may consist of a number of files. For exam-
ple, a multi-part document could consist of Hypertext
Markup Language (HTML) text [3], plus some number of
images, with each part in separate files.

The Hypertext Transfer Protocol (HTTP) [4] is a
request-response protocol designed to transfer the files
making up the parts of Web documents. Each transfer con-
sists of the client requesting a file from the server, then the
server replying with the requested file (or an error notifica-
tion). Both the request and reply contain identification and
control information in headers. HTTP uses the services of
TCP [26]. In current versions of HTTP, each TCP connec-
tion can be used for at most one retrieval. Future versions
of HTTP [12] will incorporate a proposal for the reuse of
TCP connections for multiple retrievals between the same
client and server [18, 23].

3  Prior work

In this section, we summarize three approaches to
characterizing Internet applications. Two methods, server
logs and client logs, are popular in Web measurements.
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The last approach, traffic traces, has been used for past
studies of other Internet applications.

3.1  Server logs

Most Web servers keep logs of the files they have
served; this information can be used to create a workload
model. Such an approach is fairly easy, because the
machinery for collecting model data already exists and, in
fact, the data is very likely being collected anyway. Some
studies, such as [2] and [18], require such a model of a
stream of HTTP requests arriving at a Web server.

However, there are two principal drawbacks to this
approach. One large disadvantage of using server logs is
that they cannot easily capture user access patterns across
multiple Web servers. In particular, it may be difficult to
determine the locality of references during any given user
session. Another shortcoming is that current server logs do
not capture HTTP overheads such as protocol headers.

3.2  Client logs

[7], [8], and [9] relied on data gathered by instrument-
ing the NCSA Mosaic browser [19] to log all retrievals
made during Web user sessions. These studies were con-
cerned with investigating characteristics of Web accesses.
Using this data, it would be possible to construct a corre-
sponding model, suitable for generating a synthetic work-
load.

Unlike server logs, this approach captures user
accesses between multiple Web servers. It can also charac-
terize the effects of client document caching. However,
this technique requires that browsers be able to log their
requests, currently a rare capability.

3.3  Packet traces

A third method of gathering data consists of collect-
ing packet traces taken from a subnet carrying HTTP traf-
fic, typically an Ethernet or other shared-media LAN.
From the packet traces and knowledge about the higher-
layer protocols used, traffic analysis can yield a model of
the behavior of the original application. This approach has
been used in a number of other traffic studies, such as [6]
and [24], that predate the Web. [27] analyzes the packets
arriving at an HTTP server and presents some interesting
statistics and observations. [10] describes a library of traf-
fic models for common (circa 1991) Internet applications,
which is designed for inclusion in network simulators.
[25] describes analytic models derived from traffic traces,
which have a more compact representation than purely

empirical models and can be parameterized to more accu-
rately reflect particular networks.

This approach eliminates the principal disadvantages
of the two previous methods mentioned. However, it too
introduces drawbacks. A packet trace misses higher-level
information such as specific files requested and document
types. In addition, the effects of client document caching
are more difficult to ascertain, since only cache misses
generate detectable network traffic.

4  Methodology

We chose to use a packet trace-based approach, prin-
cipally because it allowed us to capture the behavior of
individual users and we would be able to record the activ-
ity of any HTTP client. While this approach loses higher-
level information such as filenames, we felt that such data
is not essential to a network workload model.

We used the tcpdump packet capture utility [13],
running on a DEC Alpha 3000/300, to record TCP/IP
packet headers on a shared 10 Mbps Ethernet in the Com-
puter Science Division at the University of California at
Berkeley, during four periods in late 1995.

The subnet examined is a stub network (no transit
traffic) with approximately one hundred hosts; almost all
are UNIX workstations used principally by a single user.
The user community consists primarily of Computer Sci-
ence graduate students. While no statistics are available on
the relative popularity of different Web clients in this envi-
ronment, operational experience suggests that the most
prevalent is Netscape Navigator [20]. There are also sev-
eral Web servers on this subnet, associated with various
research groups.

Most HTTP servers bind to TCP port 80.2 By gather-
ing all TCP packets to or from this well-known port, we
captured what we believe is the vast majority of HTTP
traffic. Table 1 summarizes our traffic traces. The first
three traces were collected as a part of an effort to examine
various types of LAN traffic (not just HTTP traffic); the
packet counts from these traces include only those packets
attributable to HTTP. The last traffic trace collected HTTP
packets only. From these streams of packets, we extracted
those for HTTP connections originating from clients on
the local subnet. Our traces captured activity from
between forty to sixty active client hosts.

Although we do not have complete packet loss figures
for these traces, we recorded the loss of approximately
6000 out of 44,000,000 packets during the 1 November

2.  In a recent study of the characteristics of HTML documents indexed
by the Inktomi “web crawler”, approximately 94% of the documents sur-
veyed were accessed via the standard HTTP port [28].



1995 trace (before filtering to isolate HTTP packets).
These figures yield a ratio of only 0.014%. Similar packet
capture experiments using this hardware and network have
produced figures consistent with this loss rate.

5  Model

Our model of HTTP traffic captures logically mean-
ingful parameters of Web client behavior, such as file sizes
and “think times”. The traffic traces described in the pre-
ceding section provide us with empirical probability distri-
butions describing various components of this behavior.
We use these distributions to determine a synthetic work-
load. In this section, we present the components of our
model, which are summarized in Table 2.

At the lowest level, our model deals with individual
HTTP transfers, each of which consists of a request-reply
pair of messages, sent over a single TCP connection. We
model both the request length and reply length of HTTP
transfers.3

At first glance, it may seem more appropriate for a
model of network traffic to deal with the number, size, and
interarrival times of TCP segments. However, we note that

3.  In Section 6.5, we show it is appropriate to model the first HTTP
transfer on a Web page separately from subsequent retrievals for that
page. For simplicity, we have postponed discussion of this distinction.

these quantities are governed by the TCP flow control and
congestion control algorithms. These algorithms depend in
part on the latency and effective bandwidth on the path
between the client and server. Since this information can-
not be known a priori, an accurate packet-level network
simulation will depend on a simulation of the actual TCP
algorithms. This is in fact the approach taken for other
types of TCP bulk transfers in the traffic model described
in [10]. In a similar fashion, our model generates transfers
which need to be run through TCP’s algorithms; it does
not generate packet sizes and interarrivals by itself.

A Web document can consist of multiple files. A
server and client may need to employ multiple HTTP
transactions, each of which requires a separate TCP con-
nection, to transfer a single document. For example, a doc-
ument could consist of HTML text [3], which in turn could
specify three images to be displayed “inline” in the body
of the document. Such a document would require four
TCP connections, each carrying one request and one reply.
The next higher level above individual files is naturally the
Web document, which we characterize in terms of the
number of files needed to represent a document.

Between Web page retrievals, the user is generally
considering her next action. We admit the difficulty of
characterizing user behavior, due to its dependency on
human factors beyond the scope of this study. However,
we can model user think time based on our observations.

Assuming that users tend to access strings of docu-
ments from the same server, we characterize the locality of
reference between different Web pages. We therefore
define the consecutive document retrievals distribution as
the number of consecutive pages that a user will retrieve
from a single Web server before moving to a new one.4

Finally, the server selection distribution defines the
relative popularity of each Web server, in terms of how
likely it is that a particular server will be accessed for a set
of consecutive document retrievals.

6  Experimental results

From our traffic traces and subsequent analysis, we
derived the probability distributions for the different com-
ponents of our model. They are consistent with existing
Web measurement studies. We have summarized the more
interesting facets of these measurements in Table 3.

4.  We assume that all the components of a Web document come from the
same server.

Starting Date Duration (hr:min) Packets

19 Sep 1995 39:40 186,068

11 Oct 1995 29:31 458,264

1 Nov 1995 25:30 369,671

20 Nov 1995 138:14 676,256

TABLE 1. Summary of Traffic Traces.

Quantity Description

request length HTTP request length

reply length HTTP reply length

document size Number of files per document

think time Time between retrieval of two
successive documents

consecutive docu-
ment retrievals

Number of consecutive docu-
ments retrieved from any given
server

server selection Used to select each succeeding
server accessed

TABLE 2. Quantities Modeled.



6.1  Anomalies

In some cases we noticed odd trends in our data,
which indicated a large number of nearly-identical Web
documents, transferred periodically. For example, the 11
October 1995 trace showed a number of retrievals with
interarrival times of about five minutes. There were 291
instances of these transfers, accounting for approximately
20% of those transferred during the whole trace. Upon fur-
ther investigation, we found that they contained real-time,
still images of San Francisco. They used an extension to
HTML which caused clients to automatically reload them
every five minutes, thus updating the picture. As these
(and other) periodic HTTP retrievals were skewing our
data, we removed them from our traces.5

6.2  Request length

HTTP requests are sent from a client to a server. They
typically specify a file to retrieve, although they may also
provide information to a computation on the server.

The only data sent from client to server consists of the
HTTP request, so we measured the request sizes by simply
counting the number of bytes in the appropriate direction
of each TCP connection, summed over all packets. We
observed mean request lengths of about 320 bytes, with
medians around 240 bytes.

5.  While it may be argued that these retrievals should contribute to our
traffic model since they actually occur in real life, this model cannot
accurately capture the correlations between successive, periodic docu-
ment retrievals. A model attempting to characterize such periodic Web
traffic should explicitly account for this behavior.

The cumulative distribution functions (CDFs) for the
request size distributions are shown in Figure 1. The
request sizes in our traces all exhibited a bimodal distribu-
tion, with one large peak occurring around 250 bytes and
another, smaller one around 1 KB. We believe that the
former requests correspond to simple file retrievals, while
the latter may contain more complex requests such as
those generated by HTML forms. However, there is insuf-
ficient information in our existing traces to confirm this
hypothesis. (Investigating further would require packet
traces containing the payload bytes from each packet.)

6.3  Reply length

Each HTTP reply consists of the bytes sent from
server to client. Typically, the reply contains either HTML
text or some multimedia data (e.g. an image or audio clip)
to be displayed by the Web client. In the case of an error,
the HTTP reply contains an error message.

The CDFs for the reply size distributions are shown in
Figure 2. The mean file sizes ranged from 8–10 KB, with
median files around 1.5–2.0 KB. We note that although
many replies were short, we recorded some as long as 8
MB (upon further investigation we determined that they
were binary file transfers).

In each of the traces, the minimum reply length was
very short (tens of bytes). These replies probably represent
either errors or “not modified” responses to conditional
document retrieval requests. While some files may indeed
be this short, the addition of HTTP headers lengthens the
reply messages.

We note that the maximum reply sizes were rather
large (over 1 MB in each of the traces). Further, the means
(8–10 KB) were much larger than the median reply sizes
(about 2 KB). These characteristics are consistent with
distributions of reply sizes that are “heavy-tailed” (with a

HTTP request sizes show a bimodal distribution.

HTTP reply sizes have a heavy-tailed distribution, and
tend to be larger than request sizes.

A simple heuristic based on timing can be used to
group individual files into documents.

The number of files per document tends to be small;
80% of documents required less than four file transfers.

HTTP requests to retrieve the first file of a multi-file
Web page tend to be longer than subsequent requests.

The first file of a Web page tends to be larger than sub-
sequent files.

The number of consecutive documents retrieved from a
given server tends to be small. 80% of visits to a
server’s document space resulted in fewer than six doc-
uments being retrieved.

TABLE 3. Selected Measurement Results.

FIGURE 1. HTTP Request Lengths.
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large amount of the probability mass in the tail of the dis-
tribution), as shown for WWW file sizes in [8].

Assuming that HTTP retrievals generally result in the
transfer of a WWW file (and in particular, the assumption
that large HTTP replies contain WWW files), it seems nat-
ural to expect that HTTP replies would share this charac-
teristic. We repeated the analysis of [8] on our data, and
found that reply sizes above 1 KB are reasonably well-
modeled by Pareto distributions with  estimates ranging
from  to .6 By comparison, [8]
arrived at an estimate of .

6.4  Page length

Determining the number of files per page is less
straightforward, as we cannot exactly determine the set of
TCP connections carrying parts of a single document. We
therefore use two simple heuristics to determine whether
two HTTP connections belong to the same document.
First, they must originate from the same client machine.
We note that it is possible for two connections from the
same IP address to be associated with two unrelated docu-
ments, which can happen if two users fetch a document at
the same time. Because our end hosts were workstations
used by single users, we feel this occurrence is unlikely.

Second, the two connections cannot be separated by
“too much time”, an interval determined by a parameter
we call . More formally, let  and  be two
HTTP connections. Let  be the arrival time of the
starting packet of connection  and let  be the

6.  The “heavy-tailed” Pareto distribution has a CDF given by

, where  is the minimum value of

and  is a shape parameter.

arrival time of the ending packet of connection . Assum-
ing , we judge  and  to belong to the
same document only if . If

, the two connections overlap
and we judge their respective files to belong to the same
document. This condition can occur with browsers that use
multiple, overlapping TCP connections to improve inter-
active performance, such as Netscape Navigator [20].

Figure 3 illustrates the role of  in determining
the relation between two HTTP connections  and ,
between the same client and server. In the top timeline,

starts within  time after the end of ; we judge
them to belong to the same document. In the center time-
line, the inter-file gap is too long, so the files belong to dif-
ferent documents. In the bottom timeline, starts before

finishes; they must be part of the same document.

This heuristic requires a suitable value of . As
 becomes very short, it may become smaller than

the time necessary for an HTTP client to initiate a file
retrieval. In this case, related connections will be falsely
classified as belonging to different documents. Conversely,
as  becomes long, it may become longer than the
time for a user to react to the displayed document and
request a new one. Files from different pages could then
appear to be part of the same document.

The analysis in [8] classified files separated by less
than one second of idle time as belonging to the same doc-
ument, due to the limitations of the users’ reaction time.
Idle times greater than 30 seconds were assumed to
delimit documents, as few items would take longer to be
processed and displayed. Values in the intermediate range
constituted a “transition” region. According to this reason-
ing, reasonable values for  can be found in the
range .

FIGURE 2. HTTP Reply Lengths.
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We picked  for this study. The pri-
mary influence on our choice is that users will generally
take longer than one second to react to the display of a new
page and request the next document. For HTTP clients that
perform overlapping file transfers, processing time does
not affect the choice of , as the various components
of a multi-part document are downloaded, processed, and
displayed in parallel.

Given our choice of an idle threshold, we can charac-
terize the number of files per document. The mean number
of files per document ranged from 2.8 to 3.2, with the
median documents requiring only one file. We note that in
the survey of HTML documents in [5], slightly more than
half of all pages contained either zero or one inlined image
(one or two connections). Considering that some of our
“documents” were actually single-file downloads, which
would tend to skew this distribution downward, we feel
that our observations are consistent with this statistic.

[11] and [21] both analyzed a 5-minute trace from an
Internet backbone for characteristics of flows (aggrega-
tions of TCP connections). The results in [21] implied
average two-way flows of about 20 KB, considerably
shorter than our averages of 26–32 KB. [11] found 90% of
request flows to be shorter than 10 KB, with the 90th per-
centile of reply flows less than 100 KB. Our analogous
measures (based on the sums of requests and replies for a
page) were 7.4–9.0 KB and 168–249 KB respectively. We
feel that the discrepancies are due both to the different
metrics being examined and the short length of the trace
these studies used.

We note that although the number of files per docu-
ment varies as  changes, the distributions were sim-
ilar for values around , as shown in
Figure 4. Thus the exact choice of  is not critical to
our analysis.

6.5  Primary and secondary retrievals

After classifying files into pages, we can partition
their retrievals into two classes. The first, which we term
primary retrievals, consists of the first file of each docu-
ment. Typically the reply for a primary retrieval consists of
HTML text, but the reply could also be an image, a data
file, or an HTTP error message.

The other class of retrievals, called secondary retriev-
als, consists of any remaining files for a document, after its
primary retrieval. Inlined images (referenced by a primary
file consisting of HTML text) are the only known second-
ary retrievals.

We found that the sizes of requests and replies are
slightly different for primary and secondary retrievals. Pri-
mary requests tend to be larger than secondary requests
(for , the median primary and secondary
sizes were approximately 240 and 230 bytes respectively).
This tendency is illustrated by the example of Figure 5.

Primary reply sizes were also larger. The median pri-
mary replies ranged from 2.0–2.4 KB, while the median
secondary replies were between 1.2–2.0 KB. When we fit-
ted the reply sizes to Pareto distributions, the  parameter
estimates were lower for primary replies than for second-
ary replies (  vs. ).

To further distinguish the differences between pri-
mary and secondary request sizes, we computed confi-
dence intervals for the estimates of , and determined that
for all four datasets, the corresponding parameters for pri-
mary and secondary reply sizes are significantly different
with 90% confidence. We believe that the differences
between the sizes of primary and secondary retrievals are
due to the dissimilar types of data being transferred. In
particular, we note that arbitrary files downloaded from
Web servers are transferred as primary transfers, as are
HTML text files. Secondary transfers consist exclusively
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FIGURE 4. Document Lengths, 19 September
1995. Curves correspond to varying values of
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of inlined images (many of which are small bitmaps).
Based on this analysis, we conclude that it is appropriate
to model these two types of retrievals differently.

6.6  User think time

Given a selection of , the empirical distribution
of user think times between pages is the set of intercon-
nection idle times . The median think times
were short, only about 15 seconds. The 20 November 1995
trace had a much longer mean think time than the others
(1900 vs. about 1000 seconds). We note that this trace
spanned the American Thanksgiving holiday in late
November, which could explain the long idle times. The
CDFs for user think times are given by Figure 7.

6.7  Consecutive document retrievals

The design of many Web sites is such that users will
frequently access documents from the same server in suc-
cession. This fact may be important, for example, in net-
works that rely on locality of references in allocating
virtual circuits or other network resources [17]. In our
traces, users downloaded about four pages per server on
average, with a median visit of two documents. By con-
trast, [7] noted that users accessed an average of ten con-
secutive pages per server. We believe that the difference is
attributable to the interaction between user browsing strat-
egies and client caching in Web browsers. Users tend to
use a browsing strategy that has been described as “spoke
and hub”, which involves frequent backtracking to
already-visited pages. In browsers that implement client
side caching, revisited pages will not generate any network
traffic (and thus would not appear in a network trace), but
they would be counted in a client-side trace. Thus, we
would expect our consecutive document retrieval count to
be somewhat lower than that for a client access trace by
about half, as we observed.

In Figure 8, we show the CDF for the consecutive
document retrievals distribution. As can be seen, users
tend to switch between servers fairly frequently. However,
we noted cases in which visits to a server lasted for tens of
consecutive documents.

6.8  Server selection

The server selection distribution characterizes the rel-
ative frequency that each Web server was visited for some
set of consecutive document retrievals. Using this metric,
the most-visited server in this trace (indeed, for all four
traces) was the local departmental Web server. It contains
homepages for the vast majority of the users, as well as the

FIGURE 6. Primary and Secondary Reply
Lengths, 19 September 1995.
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initial document for many users. Four of the top ten serv-
ers, by this metric, were located on-site.

Given that so many of the servers accessed were local
to the tracing site, we believe that we have insufficient
information to properly characterize this aspect of our
model. We have chosen instead to approximate the server
selection distribution using a Zipf’s Law distribution.
Zipf’s Law is a discrete, heavy-tailed distribution that
states that the probability of selecting the  most popular
item in a set is proportional to . Originally, it was used
to describe the frequency of words in texts, as well as
other human-related phenomena [29]. More recently, it has
been applied to the access frequency of Web documents
[2, 8]. It seems reasonable to apply Zipf’s Law, or some
other heavy-tailed distribution, to the access patterns of
servers as well, but confirmation of this assertion requires
a larger data sample than we had available.

In general, gauging the identity of Web servers from
IP-layer packet traces is difficult. First, it is impossible to
determine which of a machine’s aliases were used to
access it (given only its IP address). Second, if a hostname
maps to multiple IP addresses (as is the case for the repli-
cated Web server described in [15]), it may be difficult to
associate these addresses with a single name.

7  Model representation

There were two possible representations for this traf-
fic model. One approach was to fit the observed data to
probability distributions that are easily described analyti-
cally. A simple analytic representation has the advantage
of being compact and (perhaps) easy to manipulate. This
approach was used in [25]; in fact, we performed some
rudimentary curve-fitting in Sections 6.3 and 6.4. How-
ever, if a data set cannot be described by a well-known dis-
tribution (such as the bimodal request size distributions in
Section 6.2), this technique cannot easily be used.

The alternative was to represent probability distribu-
tions by their CDFs, and to use the inverse transformation
method (for example, as described in [14] and applied in
[10]). While requiring more storage and perhaps being
slower, this approach can represent arbitrary distributions.

Due to the flexibility of the latter method, we chose to
maintain the CDF representation for all distributions
except the Zipf’s Law substitute for server selection,
which is calculated analytically. We based our distribu-
tions on the traffic from the 19 September 1995 trace.

An earlier version of this model was incorporated into
the INSANE network simulator, designed to help investi-
gate the performance of IP-over-ATM designs [16]. It uses
the distributions from this model to mimic the patterns of
requests and replies sent by HTTP clients and servers.

We emphasize that for a meaningful Internet simula-
tion, the actual request and reply data must be regulated by
the TCP congestion control and flow control mechanisms,
which are not included as a part of this model. It is not suf-
ficient for network applications to simply transmit data
into the network, as such an approach will not accurately
model the timing and sizes of packets actually transmitted.

8  Conclusions

We have constructed an empirical model of network
traffic produced by the Hypertext Transfer Protocol used
by World Wide Web applications. This model consists of a
number of probability distributions determined by analysis
of actual HTTP conversations. From packet traces, we
have built up higher-layer communication patterns, from
individual HTTP retrievals to Web pages to groups of
pages. This approach yields a sufficient level of detail to
serve as a component of a workload generator for a
packet-level simulation of an IP internetwork.

Our characterization of WWW-generated network
traffic has shown that HTTP requests exhibit a bimodal
distribution, and that (as revealed in prior studies) sizes of
HTTP replies have a heavy-tailed distribution. We have
shown that a simple heuristic can be used to separate
HTTP transfers into Web pages, and that the differences
between the first and subsequent transfers of a multi-file
Web document are statistically significant. We have char-
acterized some aspects of user Web page selection in terms
of locality of consecutive documents referenced. Where
possible, we have compared the results of our measure-
ments and analysis to other Web measurement studies and
found them consistent with those prior results.

9  Future work

We feel that the Zipf’s Law substitute to the server
selection distribution could be replaced with an empirical
distribution, given an adequately-long trace of network
data. It would also be desirable to investigate any correla-
tions between the different components of our model (for
example, between the popularity of a given server and the
number of consecutive documents fetched from it). The
constantly-changing nature of Web traffic calls for updates
to this model to track trends over time. Persistent-connec-
tion HTTP will require new measurement and analysis
methodologies.7 Finally, the conversion of our empirical

7.  We note that the advanced deployment of persistent-connection HTTP
forces new analysis techniques even for late-1996 traffic. Examples can
be found in recent versions of Netscape Navigator [20] and the Apache
Web server [1].
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distributions to closed-form analytic expressions would
help make the models applicable to more environments.

10  Availability

A subset of the probability distributions gathered in
this study, along with sample code, is available at:

http://http.cs.berkeley.edu/~bmah/
Software/HttpModel/
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